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Abstract—Pattern recognition is a vast field which has
seen significant advances over the years. As the datasets
under consideration grow larger and more comprehensive,
using efficient techniques to process them becomes increasingly
important. We present a versatile technique for the purpose
of feature selection and extraction - Class Dependent Features
(CDFs). CDFs identify the features innate to a class and extract
them accordingly. The features thus extracted are relevant
to the entire class and not just to the individual data item.
This paper focuses on using CDFs to improve the accuracy
of classification and at the same time control computational
expense by tackling the curse of dimensionality. In order to
demonstrate the generality of this technique, it is applied to
two problem statements which have very little in common
with each other - handwritten digit recognition and text
categorization. It is found that for both problem statements,
the accuracy is comparable to state-of-the-art results and the
speed of the operation is considerably greater. Results are
presented for Reuters-21578 and Web-KB datasets relating
to text categorization and the MNIST and USPS datasets for
handwritten digit recognition.

Keywords-MNIST; USPS; Reuters-21578; WebKB; Hand-
written Digit Recognition; Text Categorization; SVM; Pattern
Recognition

I. INTRODUCTION

T
HE field of pattern recognition is one that is broad

and rapidly advancing. Classification tasks find appli-

cation in a myriad of real-world situations. Over the past

several years, classification problems have seen a multi-

tude of approaches with increasing sophistication. While

the results obtained in this manner are impressive, they

often require extremely high computation time which can

be crippling or impossible to implement for independent

researchers on mainstream computers. Addressing the curse

of dimensionality also becomes imperative as datasets grow

tremendously.

Considering the diversity in problem statements that fall

under the broad scope of pattern recognition, it would be

greatly beneficial to solve them successfully using a generic

technique that could address the difficulties associated with

most approaches.

Handwritten digit recognition is the process of receiving

and correctly interpreting a legible hand-drawn digit from

an input source (paper or photographs) by comparing it with

previously trained data. Text categorization is the process of

classifying documents into one out of a set of predefined

labels. While the former suffers from difficulties arising due

to effective feature selection, the latter is primarily afflicted

by the curse of dimensionality. Considering the immense

difference in the usual approach to solve these problems, a

technique that can effectively tackle both of them is greatly

desirable.

With this end in mind, we introduce a novel and versatile

technique for feature selection and extraction to a variety

of classification models and demonstrate its successful ap-

plication to the problem of handwritten digit recognition

and text categorization. The features obtained, called Class

Dependent Features (CDFs), are inherent to a particular class

label and are extracted accordingly, unlike most popular

techniques which consider each individual data item sep-

arately. Feature vectors thus formed are then provided to

a classifier which performs the classification task using an

SVM.

The organization of the paper is as follows: Section (2)

describes the work done on both problem statements, Section

(3) describes, in detail, the working of our technique for

feature selection and dimensionality reduction and includes

a brief discussion on points regarding its implementation.

Results are tabulated in Section (4) using the MNIST [11]

and USPS [9] datasets for handwritten digit recognition

and the WebKB [4] and Reuters-21578 [12]. Section (5)

discusses possible future applications of this technique and

concludes the paper.

II. RELATED WORK

The field of digit recognition has seen extensive research

over the last fifteen years, and the results have been increas-

ingly promising. Since there are thousands of images in a

typical training or testing database, suitable feature selection

and extraction [15] is a significant issue.

Belongie et al. [1] used the technique of shape context

matching with K-nearest-neighbours which produced results

comparable to the current state-of-the-art. The work done

by Kegl and Busa-Fekete [8] on boosting products of base

classifiers with Haar features has also shown some very

competitive results. LeCun et al. introduced the concept
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of Convolutional Neural Networks and produced excellent

results with the LeNet-5 classifier. Deng and Yu [7] worked

with deep convex nets and produced the current best result

(0.83% error rate) on the MNIST dataset with a generic

algorithm i.e. an algorithm which does not make explicit

use of the fact that the vector matrices represent images. It

must be noted though that all of these take considerably long

to train and have very high time complexity, making them

very difficult to implement for mainstream applications.

DeCoste and Scholkopf [6] introduced the technique of

using a Virtual-SVM (V-SVM). However, this is a semi-

generic algorithm (it makes use of the fact that the vector

matrices represent images, but not necessarily characters), as

it jitters the image by one or more pixels in each direction

to create new virtual support vectors. This also brings about

an increase in the time complexity, as the number of support

vectors increases by a large amount.

In the case of text categorization, a literature survery

reveals a fairly standard set of techniques that are followed,

as outlined here. Regardless of the learning algorithm, text

classification is a challenging problem since the dimen-

sionality of the data is very high. Due to this reason,

feature selection is a fundamental issue in text classification

problems and consists of two main steps: pre-processing and

classifier training.

There are numerous studies on feature selection which

evaluate and compare most of the popular feature selection

metrics [16] [10] such as Information Gain, Chi-square

statistics etc. Ozgur and Gungor [13] analyses two keyword

selection policies named as class- and corpus-based keyword

selection by using SVMs on datasets of different skewness

and sizes.

The Tf-Idf statistic [5] increases proportionally with the

number of times a word appears in the document, but

is offset by the frequency of the word in the corpus. It

inadvertently decreases the statistic for words innate to an

entire class label for a corpus where a majority of the

documents belong to that class. Words that occur repeatedly

in a particular class label are either commonly used words

in the English language or words that collectively describe

that class. The IDF factor for the latter reduces drastically

and these words tend to be ignored thereby resulting in poor

features and lower accuracy for classification.

A. Our Contribution

In this techique, we focus on two problems at opposite

ends of the spectrum of pattern recognition - one which

focuses on feature selection and one which focuses on

reducing dimensionality.

We propose a novel and robust technique for feature

selection and extraction which gives results comparable to

the current state-of-the-art with the added advantage of being

very fast and easy to implement on a range of devices. The

algorithm works by first selecting features relevant to their

class label and extracts them accordingly. These extracted

features are interesting because they are relevant to the

entire class they are a part of, not just the individual data

item they are extracted from. We call these features Class
Dependent Features (CDFs). Moreover the entire learning

problem is then broken down into smaller classification tasks

by creating a SVM for each pair of class labels. Each pair of

class labels has a varying number of feature vectors which

enables intricate parameter selection for each classifier thus

enabling improved learning of the pair of class labels as

opposed to selecting universal parameters for all classes.

However the formation of the pair of class labels varies

depending on one-vs-one or one-vs-all classifiers. In the

former, a pair consists of two class labels juxtaposed with

each other and
(
n
2

)
classifiers are formed, assuming n to be

the total number of class labels. In the latter, however, a

pair consists of a particular class label juxtaposed with the

rest of the data resulting in n classifiers being formed. The

CDFs are then passed to the classifier to complete the task.

III. THE ALGORITHM

In this section, we explain the algorithm we use to

generate CDFs to train and test our data. For the purposes of

the experiments conducted using this technique, we assume

that the datasets under consideration are presented in a form

that can be used for arithmetic manipulation (e.g. intensity

values of pixels for the MNIST and USPS datasets; word

count of the stemmed and vectorized documents in the case

of Reuters-21578 and WebKB datasets).

A. Feature Selection

We first create a measure T for each class label. This is

done by aggregating corresponding feature values of every

member of each class label. For example, in the case of

the MNIST and USPS datasets, the class labels are the ten

possible digit classes (0, 1, 2, ..., 9). The members of each

label are the images of each handwritten digit and the feature

values are thus the pixel intensities. So the essence of what

is to be done is to average the pixels in the ith row and jth

column of all the images in a particular class label, to create

one element of the measure T . Therefore the dimensionality

of T will be the same as the dimensionality of each image

in the dataset.

Consider a vector P = {P1, P2, ...., Pm} representing

the set of all class labels in the training dataset (m is the

total number of class labels in the dataset). Each Pc =
{p1, p2, ...., pM}, pk ∈ R

N , ∀k ∈ [1,M ] further represents

all data points in the cth class label.1 Then the function

f(Pc) = {ac1 , ac2 , ..., acN } representing the summation
function for the cth class label is given by

1Here, the data points refer to individual components of a class label, i.e.
the individual images (composed of pixel intensity values) in the MNIST
and USPS datasets or documents (composed of words) in the Reuters-21578
and WebKB datasets.
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aci =
M∑
k=1

pk(i) . (1)

where N denotes the dimensionality of pk, M is the cardi-

nality of the cth class label and aci ∈ R. Here, for instance,

the element pk(i) would be the pixel intensity value of the

ith pixel of the kth image, belonging to the class label c (say,

the digit 0) of the MNIST dataset.

We then obtain the measure T (Pc) = {qc1 , qc2 , ...qcN }

qci = aci/M (2)

∀i ∈ [1, N ].
Figure 1 shows the generated measure T for the MNIST

dataset, while the measure generated for the USPS dataset

is shown in Figure 2.

Now that we have the measure T for each class label, we

must establish a relation Rxy between each pair of class

labels Px and Py . This is used to obtain the degree of

relatedness between the two class labels Px and Py , which

gives us the degree of similarity and dissimilarity between

them. The experiments in this paper were conducted taking

Rxy as

Rxy = {qxi/qyi | ∀qxi ∈ T (Px) and ∀qyi ∈ T (Py)} . (3)

We then take the mean of all the values of qxi/qyi ∈ Rxy

as shown below.

μxy =

∑N
i=1(qxi/qyi)

N
. (4)

We generate two thresholds τ and τ ′, given by

τ = bμxy .

τ ′ = b′μyx .
(5)

where b, b′ ∈ R

Values of qci ∈ T (Pc) greater than the thresholds τ or τ ′

will be selected as the feature locations for the cth class label.

Considering T (Pc) as a vector of real values, only those

indices i.e. i’s in T (Pc) for which qci’s have their values

greater than either threshold are chosen as class dependent.

For instance, only the pixel intensity values of the pixels

belonging to an image in the cth class label (say, the digit

0) of the MNIST dataset located at the indices selected by

the thresholding procedure would be selected as the Class

Dependent Features (CDFs) for the purpose of classification

of this particular image. Hence the values b and b′ can be

thought of as parameters controlling dimensionality of the

input space for the given problem statement.

Thus we define a new dataset P ′ = {P ′
1, P

′
2, ...., P

′
m},

where each P ′
c is the set of modified data items in the cth

class label, given by

P ′
c = {p′1, p′2, ...., p′M} . (6)

where each p′k, ∀k ∈ [1,M ] is,

p′k(i) =
{

pk(i), if qci > τ or qci > τ ′

NULL, otherwise
(7)

∀i ∈ [1, N ].
Thus we have effectively reduced the dimensionality of

the dataset by keeping only the class dependent values of

these features i.e the values of the features greater than the

thresholds τ or τ ′. This can be interpreted as the non-NULL

values represented in equ. (7).

B. Feature Extraction

With our thresholds τ and τ ′ calculated, we can now

proceed with the extraction of class dependent features

(CDFs) for the pair of class labels x and y. In order to do so,

we use the concept of the Kullback-Leibler (KL) divergence.

The KL divergence is a non-symmetric measure of the

difference between two probability distributions P and Q.

Specifically, the KL divergence of Q from P , denoted

DKL(P || Q), is a measure of the information lost when

Q is used to approximate P .

The feature vector Fxy used for the purpose of classifi-

cation between the pair of class labels x and y is calculated

as follows:

Fxy(k) = DKL(p
′
k || T (Px)) . (8)

Also a set of labels is created to be given to the classifier

as follows:

Lxy(k) =

{
1 p′k ∈ P ′

x .
−1 p′k ∈ P ′

y .
(9)

We have now obtained our CDFs for each class label

comparison. These features will be passed to the classifier

for training on the dataset. This process is repeated for all

pairs of class labels x and y to cover the entire dataset.

This discussion is outlined for the one-vs-one paradigm of

classification. The one-vs-all paradigm can just as easily be

used; here, the relation Rxx′ will be used instead of Rxy.

Rxx′ is defined as

Rxx′ = {qxi/qx′i |∀qi ∈ T (Px)and∀qx′i ∈ T (Px′)}. (10)

where T (Px′) is given by,

T (Px′) =
m∑

j=1,j �=x

T (Pj(i)) . (11)

The choice between the one-vs-one (
(
n
2

)
classifiers) and

one-vs-all (n classifiers) paradigms is not a constraint placed

by our technique; it is determined solely by the needs of the

problem statement. For instance, to tackle the problem of

Handwritten Digit Recognition we have used the one-vs-one
paradigm and for Text Categorization we use the one-vs-all
paradigm.
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Figure 1: Measure T of images of all class labels in the

MNIST dataset

Figure 2: Measure T of images of all class labels in the

USPS dataset

C. Discussion

The formation of the measure T for each class label

is done primarily to obtain a unit that may stand for the

entire class label, i.e. the measure T for each class label can

be thought of as a representation of the entire class label.

The next step is to establish the degree of similarity and

dissimilarity between class labels, which will subsequently

lead to appropriate feature selection. To this end, per unit

division becomes a particularly apt choice for the relation

Rxy. Division between two real numbers (say h and k,

k �= 0) can result in one of three possible situations -

either their ratio is significantly greater than or less than

unity or it approximately equals unity. The first two cases

suggest a great dissimilarity between h and k while the third

case indicates a high degree of similarity between them.

This argument implies that the two thresholds τ and τ ′ that

are generated are thus a means of isolating the dissimilar

elements of the measure T from the similar elements. This

distinction helps in distinguishing between class labels and

culminates in the selection of relevant features.

The relations formed in the data using our technique can

be looked at from both a macroscopic and microscopic

viewpoint - the degree of relatedness between two class

labels (macroscopic) adds a level of understanding to the

data, which can be used to calculate the features of the

individual data point in its class label (microscopic). Rxy

gives us the correspondence between each pair of class labels

by identifying the points in the input space that contribute

actively to determine the class label. This correspondence

can be considered as an added layer of learning that further

improves classification accuracy. So the algorithm not only

learns the features by giving them to a classifier but also - by

just looking at the data - learns what features are relevant.

IV. EXPERIMENTAL RESULTS

In order to test our technique and prove its generality and

versatility, we used it on two fundamentally different prob-

lem statements - handwritten digit recognition and text cate-

gorization. For the former, we used the well-known MNIST

and USPS datasets and used the WebKB and Reuters-21578

datasets for the latter. We used SVMs as the classifier for

both problem statements and the optimum parameters were

determined by using n-fold cross-validation.

A. Handwritten Digit Recognition

As can be observed from Table I, our technique produces

the best reported error rate among generic classification

algorithms (no preprocessing was carried out on the data)

after Hinton and Salakhutdinov’s (2007) deep belief nets

(1.00%) [14] and Deng and Yu’s deep convex nets (0.83%).

It outperforms Kegl and Busa-Fekete’s products of boosting

stumps (1.26%).

We now turn our attention to the performance of CDFs

with the USPS dataset, the results of which are presented in

Table II.

Table I: Comparison of various generic techniques with error

rates (%) on the MNIST dataset.

Techniques Error
Linear classifier (1-layer NN) 12.0

K-nearest-neighbors, L3 2.83

Products of boosted stumps 1.26

40 PCA + Quadratic classifier 3.3

SVM, Gaussian kernel 1.4

3-layer NN, 500+150 hidden units 2.95

2-layer NN, 800 HU, Cross-Entropy 1.53

Deep Belief Net 1.0

Deep Convex Net 0.83

Large Convolutional Net (no distortions) 0.62

CDFs, SVM, 2-degree poly kernel 1.25

Table II: Comparison of various techniques with error rates

(%) on the USPS dataset.

Techniques Error
Relevance vector machine 5.1

Convolutional Neural Net (LeNet-1) 5.0

Kernel densities, virtual data 4.2

Products of boosted stumps 4.24

SVM (raw pixels) 4.0

LDA, virt. data, Gauss. mix. density. 3.4

Two-sided tangent distance 3.0

3-NN, 2-D deformation model 2.7

Preprocessing, SVM 2.5

CDFs, SVM, 2-degree poly kernel 4.78

B. Text Categorization

To evaluate the utility of the various feature selection

methods used, the F1-measure is used which combines
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precision and recall, two commonly used measures of text

categorization performance.

Precision is defined as the ratio of correct classification of

documents into categories to the total number of attempted

classifications. Recall is defined as the ratio of correct

classifications of documents into categories to the total

number of labeled data in the testing set. For multi-label

classification, they are formulated as follows:

Precision(π) =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FPi
(12)

Recall(ρ) =

∑n
i=1 TPi∑n

i=1 TPi +
∑n

i=1 FNi
(13)

Where TPi , FPi and FNi is the number of True Positives,

False Positives and False Negatives respectively.

There are two different ways to calculate the F1 statistic

namely Micro- and Macro-averaged F1-measures. The for-

mer reflects the overall accuracy better, while the latter is

good at measuring the performance of the classifier on rare

categories since it gives equal weight to all classes regardless

of the frequency of the class.

F (micro− averaged) =
2πρ

π + ρ
(14)

F (macro− averaged) =

∑n
i=1

2πρ
π+ρ

n
(15)

Hence a complete overview of the classification task can

be obtained by viewing and comparing these two statistics.

Table III and Table IV show precision, recall and F measure

for each label in the corpus as well as the micro and macro

averaged F value for each set. These results are obtained

using a SVM classifier for the Reuters-21578 Dataset and

WebKB Dataset respectively. The average number of fea-

tures can be controlled by varying the threshold and the

resulting Micro F1 scores are shown in Figure 3.

In order to benchmark our feature selection and extrac-

tion technique, it is compared with contemporary feature

selection techniques such as Information Gain, Expected

Cross Entropy, Mutual Information, Odds Ratio, the Weight

of Evidence of Text, CHI and Gini index on the Reuters

Dataset. The SVM classifier is again used for all tech-

niques thereby maintaining uniformity and the results for

the Reuters-21578 dataset are tabulated in Table V. It is

evident that CDFs outperform all other techniques and are a

significant improvement upon them. The macro and micro F

scores (89.28% and 96.32%) exceed Gini index, the second

best, by 20% and 6.5% respectively.

On an absolute scale, our results are on par with state-of-

the-art results on the same datasets. While there are methods

which outperform our classifier, we would like to point out

that all of them either use complex, image-based techniques

or are algorithms with extremely high computational com-

plexity. Some of them create and use virtual data, which also

significantly increases computation time. This means that

these algorithms are essentially limited in their application to

only machines with extremely sophisticated hardware which

are capable of running them. Our technique, on the other

hand, has no such limitations and can give strong results in

a small amount of time. This makes its range of application

much broader.

Table III: Precision Recall and F1 Statistics on Reuters-

21578 Dataset.

Category Precision Recall F1
EARN 98.36 99.54 98.94

ACQ 96.30 97.27 96.79

CRUDE 96.52 91.74 94.07

TRADE 89.88 94.66 92.20

MONEY-fx 83.53 81.61 82.56

INTEREST 92.88 80.27 86.10

SHIP 90.00 75.00 81.82

GRAIN 75.00 90.00 81.82

MICRO
AVG F1

96.32 MACRO
AVG F1

89.29

Table IV: Precision Recall and F1 Statistics on WebKB

Dataset

Category Precision Recall F1
COURSE 93.58 89.35 91.42

FACULTY 91.35 84.75 87.93

PROJECT 76.07 73.80 74.92

STUDENT 88.02 87.86 87.94

MICRO
AVG F1

87.14 MACRO
AVG F1

85.55

Table V: Benchmarking CDFs with contemporary tech-

niques on Reuters-21578 using SVM classifiers.

Feature Weight Function Macro F Micro F
TFxIDF 62.63 84.73

TFxGINI 69.82 89.79

TFxIG 63.88 84.64

TFxCROSS-ENTROPY 66.63 86.55

TFxX2 60.88 83.71

TFxMUTUAL-INFO 68.15 87.59

TFxODDS-RATIO 69.16 88.05

TFxWEIGHT OF EVID 64.24 85.22

CDF 89.29 96.32

These experiments were carried out on a 2nd Generation

Intel Core i5-2410M processor running Ubuntu 13.04 and

the code was implemented using OpenCV 2.4.6.1 [3]. The

training and testing on the USPS dataset takes 6.37 seconds

while on the MNIST dataset it takes 5.77 minutes. In

comparison, while running the MNIST task using Stacked
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Denoising Autoencoders, pre-training takes 585.01 minutes.

Fine-tuning is completed after 36 epochs in 444.2 minutes.

The final testing score obtained is 1.3%, which our technique

outperforms by 0.05%. These results were obtained using

Theano 0.6rc3 [2] on a machine with an Intel Xeon E5430

@ 2.66GHz CPU, with a single-threaded GotoBLAS. This

serves to illustrate the accuracy our technique brings with its

computation time being a fraction of that taken by Stacked

Denoising Autoencoders.

Figure 3: Graph depecting variation of Micro Avg F Measure

w.r.t. Average number of CDFs on Reuters-21578 Dataset

V. CONCLUSIONS AND FUTURE WORK

We have proposed a technique for feature selection and

extraction using Class Dependent Features (CDFs). Our

technique has been tested on the MNIST and USPS datasets

for handwritten digit recognition as well as on the Reuters-

21578 and WebKB datasets for text categorization. We have

obtained strong competitive results using an SVM with a

degree-2 polynomial kernel and these results along with

those of comtemporary techniques have been tabulated. Our

results are comparable to the current state-of-the-art, and on

par with the current best generic algorithms.

We are currently working on improving the results quoted in

this paper and are looking towards applying our technique on

other problem statements such as document summarization

and analysis of EEG signals for human-computer interaction.
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