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Abstract

Modern machine learning relies on algorithms that fit expressive models to large datasets.
While such tasks are easy in low dimensions, real-world datasets are truly high-dimensional.
Additionally, a prerequisite to deploying models in real-world systems is to ensure that their
behavior degrades gracefully when the modelling assumptions no longer hold. Therefore, there
is a growing need for efficient algorithms that fit reliable and robust models to data.

In this thesis proposal, we focus on designing such efficient, robust and provable algorithms
for fundamental tasks in machine learning and statistics. In particular, we investigate two
complementary themes arising in this area: high-dimensional robust statistics and fast numerical
linear algebra. The first addresses how to fit expressive models to high-dimensional noisy datasets
and the second develops fast algorithmic primitives to reduce dimensionality and de-noise
large datasets. We resolve central open questions in robust statistics and randomized linear
algebra, and introduce several new algorithmic ideas along the way. Finally, we make the case
for analytic techniques, such as convex relaxations, being the natural choice for robust algorithm
design.
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1 Introduction

Modern machine learning relies on algorithms that fit expressive models to large datasets. While
such tasks are easy in low dimensions, real-world datasets are truly high-dimensional. Furthermore,
a prerequisite to deploying models in real-world systems is to ensure that their behavior degrades
gracefully when the modelling assumptions no longer hold. Therefore, there is a growing need for
efficient algorithms that fit reliable and robust models to data.

This thesis proposal focuses on the burgeoning area of designing efficient, robust and provable
algorithms for fundamental tasks arising in machine learning. The long-term goal of this research
program is to provide a unified algorithmic theory for such tasks. This program is an intensely
active area of research and has already witnessed several breakthroughs, including adverasially
robust high-dimensional statistics [DKK+19, LRV16], topic modelling [AGM12], learning mixture
models [MV10], and tensor decompositions [BCMV14]. These breakthroughs have led to many
new algorithmic insights and have been influential in designing the latest robust algorithms for
sensitive practical applications.

In particular, in this thesis proposal, we focus on two complementary themes arising from this
program: high-dimensional robust statistics and fast numerical linear algebra. The first investigates
how to fit expressive models to high-dimensional noisy datasets and the second develops fast
algorithmic primitives to reduce dimensionality and de-noise large datasets. For instance, fitting a
linear model (regression) or a Gaussian mixture model to a high-dimensional dataset and reducing
dimensionality of the dataset are oftentimes complementary and core algorithmic tasks in numerous
machine learning and data analysis applications.

Ensuring robustness and reliability remains a long-standing challenge in such applications
when the underlying data is noisy. We present several recent results on designing robust, efficient,
and reliable algorithms for fundamental statistical and linear algebraic tasks in modern machine
learning. The algorithms we develop draw upon tools from convex and polynomial optimization,
high-dimensional probability, random matrix theory, functional analysis and convex geometry.
Further, the algorithms are accompanied with provable guarantees on their correctness and per-
formance. Finally, we distill unifying ideas across different settings that lead to robust algorithm
design and discuss potential directions for future work.

1.1 Overview

Robust Statistics. Classical works in statistics study fitting a model to a set of data points, with
the crucial assumption that the data we observe is noise-free and drawn i.i.d. from a reasonable
distribution. However, as early as the 60’s, statisticians already realized that real-world datasets
are noisy and are unlikely to fit idealized statistics models [Hub64]. The sources of such noise can
range from systematic bias and error in data collection to malicious tampering. Finding efficient
algorithms to fit robust models to noisy data has spawned a decades-long research program
spanning many academic disciplines (see [DK19, RSS18] for recent surveys).

One such fundamental task is to robustly fit a mixture of Gaussians to noisy input data. Finding
an efficient algorithm for this task was also highlighted as a central open problem at the Founda-
tions of Big Data workshop at the Simons Institute [DVW18]. Recent results addressed the special
cases of robustly estimating a single Gaussian [DKK+19, LRV16], a mixture of mean-separated
Gaussians [HL18, KSS18, DKS18], TV-distance separated Gaussians [BK20],[DHKK20], and a uni-
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form mixture of two Gaussians [Kan20]. In joint work with Diakonikolas, Jia, Kane, Kothari and
Vempala [BDJ+20], we completely resolved this problem and obtained the first polynomial-time
algorithm for robustly estimating a mixture of k arbitrary Gaussians.

In a similar vein, yet another fundamental task in high-dimensional statistics is to robustly fit a
linear function when the input is noisy and potentially drawn from a heavy-tailed distribution. In
a sequence of breakthrough works in 2018, the first efficiently computable estimators for robust
linear regression were obtained [KKM18, PSBR20, DKS19]. A central open question that came out
of this sequence of works was whether the information-theoretically optimal rate of convergence
can be obtained efficiently (see [KKM18]). In joint work with Adarsh Prasad [BP21], we obtained a
polynomial time algorithm for robust regression that achieves the information-theoretically optimal
convergence rate. This problem continues to be of significant interest, and several concurrent and
followup works [ZJS20, CAT+20, PJL20, JLST21] improve the sample complexity and running time
requirement in certain special cases, however do not obtain optimal rates always.

A closely related line of work, initiated by Balcan, Blum and Vempala [BBV08], considers
learning from data in the presence of an overwhelming fraction of outliers. In this setting, it is
information-theoretically impossible to recover the true parameters (such as mean or covariance).
However, we can relax the goal to output a small list of candidate parameters, with at least one
close to the true solution. In joint work with Pravesh Kothari [BK21], we give the first polynomial
time algorithm for recovering the subspace spanned by the uncorrupted samples in the presence of
overwhelming outliers. We also significantly improve the running time for regression, a problem
originally considered in [RY20a, KKK19].

A common theme in all the aforementioned results is to identify analytic properties of proba-
bility distributions and design algorithms that encode these properties as polynomial constraints.
Surprisingly, the algorithms we obtain by following this blueprint are automatically robust to cor-
ruptions in the input data. Therefore, we believe that the mathematical machinery we developed
(based on the sum-of-squares convex hierarchy) lays the foundations of a unified theory of robust
algorithmic statistics.

Fast Numerical Linear Algebra. Randomized algorithms for linear algebra problems have been
at the center of the modern machine learning revolution. This is because matrices yield a simple rep-
resentation of large-scale data and machine learning algorithms exploit efficient manipulations that
can be performed on matrices (see recent surveys [Woo14, BHK20, KV17] and references therein).
In this proposal, we focus on improving the running time of such key algorithmic primitives,
including dimensionality reduction, principal component analysis (low-rank approximation) and
testing properties of large matrices, such as positive semi-definiteness.

Low-rank approximation is one of the most common dimensionality reduction techniques,
whereby one replaces a large matrix with a low rank factorization. It is easy to see that in the worst
case, we must read the entire input matrix to compute such a factorization. However, when the
input matrix has structure, we showed that we can avoid reading most of the matrix and compute
a factorization in sub-linear time. In joint work with David Woodruff [BW18], we obtained the
first sub-linear time algorithm for factoring distance matrices that arise from an arbitrary finite
metric over n points. Further, in joint work with Chepurko and Woodruff [BCW20], we obtained
an information-theoretically optimal algorithm for factoring positive semi-definite matrices and
Euclidean distance matrices, improving prior work of Musco and Musco [MW17]. Additionally,
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we obtained optimal algorithms for regression when the design matrix is PSD and initiated the
study of robust low-rank approximation.

A closely related problem is to determine whether a given matrix is positive semi-definite (PSD).
Classical algorithms to solve this problem require computing the entire spectrum, which can be
computationally prohibitive for large matrices. In joint work with Chepurko and Jayaram [BCJ20],
we formalized the problem of testing whether a matrix is PSD or separated from the PSD cone
in Operator or Frobenius norm. We showed that a natural algorithm determines which of the
two cases the input matrix belongs to, without reading most of the input matrix. In fact, the
time/queries required is independent of the dimension of the matrix and only depends on the
distance from the PSD cone.

In each of the aforementioned problems, we leverage the fact that the input isn’t an arbitrary
matrix, but rather drawn, potentially adversarially, from a structured family, such as PSD matrices.
A similar phenomenon has been observed for several optimization problems, inlcuding solving
linear systems for Laplacian/Diagonally Dominant matrices [ST14, KOSZ13, KMP14] and Block
Henkel matrices [PV21], covariance estimation of Toeplitz matrices [ELMM20], and approximation
the permanent of boolean [JS89], non-negative matrices [JSV04] and PSD [AGGS17, YP21] matrices.
The algorithms we design for low-rank approximation are robust to small perturbations in the input
that may falsify assumptions such as PSD-ness. However, the tools we introduce are specialized
to each problem. A general theory of when structure in the input matrices can be exploited for a
given class of optimization problems remains an outstanding research direction.
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2 Robust Algorithmic Statistics

Given a collection of observations and a class of models, , the objective of a typical learning
algorithm is to find the model in the class that best fits the data. Such learning algorithms often
assume that the input data are i.i.d. samples generated by a statistical model in the given class. This
is a simplifying assumption that is, at best, only approximately valid, as real datasets are typically
exposed to some source of systematic noise. Robust statistics [Hub04, HRRS11] challenges this
assumption by focusing on the design of outlier-robust estimators – algorithms that can tolerate a
constant fraction of corrupted datapoints, and achieve error that is independent of the dimension.
Despite significant effort over several decades starting with important early works of Tukey and
Huber in the 60s, until fairly recently, even for the most basic high-dimensional estimation tasks,
all known computationally efficient estimators were highly sensitive to outliers.

This state of affairs changed with two independent works [DKK+19, LRV16], which gave the
first computationally efficient and outlier-robust learning algorithms for estimating the mean
and covariance of a single high-dimensional Gaussian distribution. Since these initial works, we
have witnessed substantial research progress on algorithmic aspects of robust high-dimensional
estimation by several communities, including theoretical computer science, machine learning,
and mathematical statistics (see [DK19] for a recent survey). However, several central questions
remained open, as discussed in the subsequent subsections.

We begin by precisely defining the corruption model we consider. We work in the strong
contamination model, which generalized several well-studied noise models, including the Huber
contamination model [Hub64].

Definition 2.1 (Strong Contamination Model). Given a parameter ε ∈ (0, 1/2) and a class of
distributions D over Rd, the adversary is computationally unbounded and operates as follows: the
algorithm specifies a number of samples, n, and n i.i.d. samples are drawn from some unknown
D ∈ D. The adversary is allowed to inspect the samples, remove up to εn samples and replace
them with arbitrary points in Rd. The modified set is given as input to the algorithm. We call such
a set an ε-corrupted sample.

Various communities have also considered less powerful adversaries, giving rise to weaker
contamination models. For instance, an adversary may be adaptive or oblivious to the inliers, only
allowed to add outliers, or only allowed to remove inliers. Next, we consider fitting basic models,
such as Gaussian Mixture models and regression, in the presence of adversarial outliers.

2.1 Gaussian Mixture Models

The Gaussian Mixture Model (GMM) has been the subject of a century-old line of research begin-
ning with Pearson [Pea94]. Progress on provable algorithms for learning GMMs began with the
influential work of Dasgupta [Das99], yielding clustering algorithms that succeed under various
separation assumptions [AK05, VW04, AM05, BV08]. These assumptions, however, do not cap-
ture natural separated instances of Gaussians, such as separation in distribution (total variation)
distance. A more general approach [MV10, BS15] circumvents clustering altogether by giving an
efficient algorithm for parameter estimation without any separation assumptions. However, this
approach is brittle to even adversarially corrupting a single input point and crucially relies on the
algebraic structure of Gaussians. A natural question to ask is then as follows:

4



Question 2.2. Is there an efficient and robust algorithm to learn the parameters of arbitrary mixtures of k
Gaussians?

This question, and several special cases has received a lot of attention over the years. Clustering
a mixture of k Gaussians is an important special case of this problem, where each pair of components
of the mixture is nearly completely separated in total variation distance. Until recently, no efficient
robust algorithm was known even for clustering a mixture of two well-separated Gaussians.

We begin by formally defining a Gaussian Mixture model:

Definition 2.3 (Gaussian Mixture Model). A mixture of k Gaussians is a probability distributon,
denoted byD = ∑i∈[k] pi · N (µi, Σi), where for all i ∈ [k], µi ∈ Rd and Σi ∈ Rd×d is a set of k means
and covariances respectively, pi > 0, and ∑i∈[k] pi = 1. A sample from D is generated by picking
component i with probability pi and then outputting an i.i.d. sample from N (µi, Σi).

Additionally, to measure closeness between two distributions, we use total variation (TV)
distance.

Definition 2.4 (Total Variation Distance). Given two distributions p and q, we define the total
variation distance between them as follows:

dTV (p, q) =
1
2

∫ ∞

−∞
|p(x)− q(x)|dx.

We first consider the special case where the input mixture is clusterable, i.e. all components of
the mixture are pairwise separated in TV distance.

2.1.1 Robustly Clustering a Mixture of Gaussians

In recent work with Pravesh Kothari [BK20], we obtained the first polynomial-time algorithm based
on the sum-of-squares (SoS) method for clustering TV-separated k-GMMs in the presence of a small
fraction of fully adversarial outliers. Conceptually, our algorithm relies on analytic (as opposed to
algebraic) properties of Gaussians, which we believe are closely tied to designing robust algorithms.
Formally,

Theorem 2.5 (Outlier-Robust Clustering of k-GMMs). Fix η, ε > 0. Let D = ∑i∈[k]
1
kN (µi, Σi)

be a k-GMM such that for all i 6= i′, dTV (N (µi, Σi) ,N (µi, Σi)) > 1 − exp (−(k/η)c), for a fixed
constant c. Then, there exists an algorithm that takes input an ε-corruption Y of a sample X ∼ D such
that X = C1 ∪ C2 ∪ . . . ∪ Ck, with equal sized clusters Ci corresponding to points drawn from N (µi, Σi),
and with probability at least 0.99, outputs an approximate clustering Y = Ĉ1 ∪ Ĉ2 ∪ . . . ∪ Ĉk satisfying
mini6k

|Ĉi∩Ci |
|Ci | > 1−O(k2k)(ε + η). The algorithm succeeds whenever n = |X| > dpoly(k/η) and runs in

time npoly(k/η).

We can use off-the-shelf robust estimators for mean and covariance of Gaussians( [DKK+19]) in
order to get statistically optimal estimates of the mean and covariances of the target k-GMM.

Corollary 2.6 (Parameter Recovery from Clustering). In the setting of Theorem 2.5, with the same
running time, sample complexity and success probability, our algorithm can output {µ̂i, Σ̂i}i∈[k] such that
for some permutation π : [k]→ [k],

dTV

(
N (µi, Σi) ,N

(
µ̂π(i), Σ̂π(i)

))
6 Õ

(
k2k(ε + η)

)
,

where Õ surpresses polylogarithmic factors in k, η and ε.
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We note that a similar result was independently and concurrently obtained by [DHKK20]
resulting in a merge [BDH+20].

Discussion. We obtain the first outlier-robust algorithm that works for clustering k-GMMs under
information-theoretically minimal separation assumptions. Such results were not known even for
k = 2. To discuss the bottlenecks in prior works, it is helpful to use following consequence of two
Gaussians with means µ1, µ2 and covariances Σ1, Σ2 being at a TV distance > 1− exp(−O(∆2)) in
terms of the distance between their parameters.

Definition 2.7 (∆-Separated Mixture Model). An equi-weighted mixture N1,N2, . . . ,Nk with pa-
rameters {µi, Σi}i∈[k] is ∆-separated if for every pair of distinct components i, j, one of the following
three conditions hold (Σ†/2 is the square root of pseudo-inverse of Σ):

1. Mean-Separation: ∃v ∈ Rd such that

〈µi − µj, v〉2 > ∆2 · v>(Σi + Σj)v,

2. Spectral-Separation: ∃v ∈ Rd such that

v>Σiv > ∆ · v>Σjv,

3. Relative-Frobenius Separation:1 Σi and Σj have the same range space and∥∥∥Σ†/2
i ΣjΣ†/2

i − I
∥∥∥2

F
> ∆2 ·

∥∥∥Σ†/2
i Σ1/2

j

∥∥∥4

op
.

We show that two Gaussians separated in TV distance can be separated in any of the aforemen-
tioned notions of parameter distance. The key bottleneck for known algorithms prior to our work
was handling separation in Spectral and Relative Frobenius distance (cases 2 and 3 above).

Figure 1: (a) Mean Separation (b) Spectral Separation (c) Relative Frobenius Separation

Often real-world data need not be Gaussian, and our algorithm does not overfit to this assump-
tion. It succeeds for mixtures of all distributions that satisfy two well-studied analytic conditions:

1Unlike the other two distances, relative Frobenius distance is meaningful only for high-dimensional Gaussians. As
an illustrative example, consider two 0 mean Gaussians with covariances Σ1 = I and Σ2 = (1 + Θ(1/

√
d))I. Then, for

large enough d, the parameters are separated in relative Frobenius distance but not spectral or mean distance.
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anti-concentration and hypercontractivity. In particular, we formulate these conditions as polynomial
inequalities and obtain algorithms that can efficiently verify them. We thus move beyond Pearson’s
method of moments and consider identifying clean analytic conditions that enable the existence
of efficient and robust clustering algorithms an important contribution of our work. We note
that such a result for non-Gaussian distributions was not known, even with access to unbounded
computation.

Next, we define the precise analytic conditions we require and we refer the reader to Appendix
A for background on sum-of-squares proofs.

Definition 2.8 (Certifiable Hypercontractivity of Degree-2 polynomials). An isotropic distribution
D onRd is said to be h-certifiably C-hypercontractive if there’s a degree h sum-of-squares proof of
the following unconstrained polynomial inequality in d× d matrix-valued indeterminate Q:

E
x∼D

[(
x>Qx− E

x∼D

[
x>Qx

])h
]
6 (Ch)h

(
E

x∼D

[(
x>Qx− E

x∼D

[
x>Qx

])2
])h/2

,

A set of points X ⊆ Rd is said to be C-certifiably hypercontractive if the uniform distribution
on X is h-certifiably C-hypercontractive.

Hypercontractivity is an important notion in high-dimensional probability and analysis on
product spaces [O’D14]. Kauers, O’Donnell, Tan and Zhou [KOTZ14] showed certifiable hyper-
contractivity of Gaussians and more generally product distributions with subgaussian marginals.
Certifiable hypercontractivity strictly generalizes the better known certifiable subgaussianity property
(studied first in [KSS18]) that controls higher moments of linear polynomials.

In contrast to hypercontractivity, anti-concentration forces lower-bounds of the form Pr[〈x, v〉2 >
δ ‖v‖2

2] > δ′, for all directions v. Certifiable anti-concentration was recently introduced in indepen-
dent works of Karmalkar, Klivans and Kothari [KKK19] and Raghavendra and Yau [RY20a] and
later used [BK21],[RY20b] for the related problems of list-decodable linear regression and subspace
recovery2.

Following [KKK19], we formulate certifiable anti-concentration via a univariate, even poly-
nomial pδ,Σ that uniformly approximates the 0-1 core-indicator 1(〈x, v〉2 > δv>Σv) over a large
enough interval around 0. Let qδ,Σ(x, v) be a multivariate (in v) polynomial defined by qδ,Σ(x, v) =(
v>Σv

)2s pδ,Σ

(
〈x,v〉√
v>Σv

)
.Since pδ,Σ is an even polynomial, qδ,Σ is a polynomial in v.

Definition 2.9 (Certifiable Anti-Concentration). A mean 0 distribution D with covariance Σ is
2s-certifiably (δ, Cδ)-anti-concentrated if for qδ,Σ(x, v) defined above, there exists a degree-2s sum-
of-squares proof of the following two unconstrained polynomial inequalities in indeterminate
v: {

〈x, v〉2s + δ2sqδ,Σ(x, v)2 > δ2s
(

v>Σv
)2s
}

,
{

E
x∼D

[
qδ,Σ(x, v)2] 6 Cδ

(
v>Σv

)2s
}

,

An isotropic subset X ⊆ Rd is 2s-certifiably (δ, Cδ)-anti-concentrated if the uniform distribution on
X is 2s-certifiably (δ, Cδ)-anti-concentrated.

2List-decodable versions of these problems generalize the “mixture” variants - mixed linear regression and subspace
clustering - that are easily seen to be special cases of mixtures of k-Gaussians with TV separation 1.
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Remark 2.10. For natural examples, s(δ) 6 1/δc for some fixed constant c. For e.g., s(δ) = O( 1
δ2 )

for standard Gaussian distribution and the uniform distribution on the unit sphere (see [KKK19]
and [BK21]). To simplify notation, we will assume s(δ) 6 poly(1/δ) in the statement of our results.

Additionally, we need that the variance of degree-2 polynomials is bounded in terms of the
Frobenius norm of the coefficients of the polynomial. Formally,

Definition 2.11 (Degree-2 Polynomials with Certifiably Bounded Variance). A mean 0 distribution
D with covariance Σ certifiably bounded variance degree 2 polynomials if there is a degree 2
sum-of-squares proof of the following inequality in the indeterminate Q ∈ Rd×d{

E
x∼D

[(
x>Qx− Ex∼Dx>Qx

)2
]
6 C

∥∥∥Σ1/2QΣ1/2
∥∥∥2

F

}
,

Our general result gives an outlier-robust clustering algorithm for separated mixtures of
reasonable distributions, i.e., distributions that satisfies both certifiable hypercontractivity, anti-
concentration and have bounded variance of degree-2 polynomials. Even the information-theoretic
(and without outliers, i.e., ε = 0) clusterability of such distributions was not known prior to our
work.

Theorem 2.12 (Outlier-Robust Clustering of Reasonable Mixtures). Fix η > 0, ε > 0. Let D be
a ∆-separated mixture of reasonable distributions. Then, there exists an algorithm that takes input an
ε-corruption Y of a sample X = C1 ∪ C2 ∪ . . . Ck, with true clusters Ci of size n/k drawn i.i.d. from D and
outputs an approximate clustering Y = Ĉ1 ∪ Ĉ2 ∪ . . . ∪ Ĉk satisfying mini6k

|Ĉi∩Ci |
|Ci | > 1−O(k2k)(ε + η).

The algorithm succeeds with probability at least 0.99 over the draw of the original sample X whenever
n > dpoly(k/η) and runs in time npoly(k/η)) whenever ∆ > poly(k/η)k.

Future Directions. The class of distributions that satisfy certifiable hypercontractivity of degree-2
polynomials is quite broad, and includes all strongly log-concave distributions. However, all
existing approaches can establish certifiable anti-concentration only for rotiationally invariant
distributions and affine transformations thereof. Therefore, a natural open question is as follows:

Open Question 2.13 (Charecterizing Certifiable Anti-Concentration). What class of distributions
(beyond rotationally invariant distributions) admit low-degree sum-of-squares certificates ?

Further, the certificates we establish, even for Gaussian distributions, require a degree that
grows polynomialy with δ, the bound on the expectation. The running time of our algorithm
scales exponentially in the degree required above and thus improved bounds lead to significantly
faster algorithms. Moreover, such an improvement would lead to milder assumptions on the TV
separation between the components.

Open Question 2.14 (Degree of Certifiable Anti-Concentration). What is the minimum degree re-
quired to establish (δ, Cδ)-certifiable anti-concentration for Gaussian distributions? Is a polynomial
dependence on δ neccessary?
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2.1.2 Robustly Learning a Mixture of Arbitrary Gaussians

Building on [BK20], in joint work with Diakonikolas, Jia, Kane, Kothari and Vempala, [BDJ+20]
we were able to completely answer the aforementioned central question (Question 2.2) in the
affirmative, by providing an efficient and robust algorithm that learns the parameters of all mixtures
of k Gaussians, thereby resolving this central question in high-dimensional statistics. Our result
requires the information-theoretically minimum assumptions on the input mixture, is robust a small
fraction of adversarial corruptions and is provably faster than the existing non-robust algorithm of
Moitra-Valiant [MV10]. Formally,

Theorem 2.15 (Robustly Learning k Arbitrary Gaussians). There is an algorithm with the following
behavior: Given ε > 0 and a multiset of n = dO(k) (1/ε)ck samples from a distribution F on Rd such
that dTV(F,M) 6 ε, for an unknown target k-GMM D = ∑k

i=1 wiN (µi, Σi), the algorithm runs in time
poly(n) (1/ε)c′k and outputs a k-GMM hypothesis D̂ = ∑k

i=1 ŵiN (µ̂i, Σ̂i) such that with high probability
we have that dTV

(
D̂,D

)
6 O

(
ε1/c′′k

)
, where ck, c′k, c′′k depends only on k.

A number of works have made algorithmic progress on important special cases of the above
problem, including faster robust clustering for the spherical case under minimal separation con-
ditions [HL18, KSS18, DKS18], robust clustering for separated (and potentially non-spherical)
Gaussian mixtures [BDH+20], and robustly learning uniform mixtures of two arbitrary Gaussian
components [Kan20]. A similar result was independently and concurrently obtained by [LM21],
under slightly stronger assumptions, and using completely different techniques.

Theorem 2.15 gives the first polynomial-time robust proper learning algorithm, with dimension-
independent error guarantee, for arbitrary k-GMMs, for any fixed k. Known Statistical Query
lower bounds [DKS17] suggest that dΩ(k) samples are necessary for efficiently learning GMMs, for
approximation to constant accuracy, even in the (much simpler) noiseless setting and when the
components are pairwise well-separated in total variation distance. This provides evidence that the
sample-time tradeoff achieved by our result is qualitatively optimal.

Further, we show that the same algorithm also achieves the stronger parameter estimation guar-
antee. We note that parameter estimation requires some assumptions on the underlying mixture.
The following corollary applies under the standard assumption that any pair of components in the
unknown mixture has total variation distance at least εck , where ck only depends on k.

Corollary 2.16 (Robust Parameter Estimation). Let D = ∑k
i=1 wiN (µi, Σi) be an unknown target

k-GMM satisfying the following conditions: (i) dTV(N (µi, Σi),N (µj, Σj)) > ε f1(k) for all i 6= j, and (ii)
S = {i ∈ [k] : wi > ε f2(k)} is a subset of [k], where f1(k), f2(k) are sufficiently small functions of k. Given
ε > 0 and a multiset of n = dO(k) (1/ε)ck samples from a distribution F on Rd such that dTV(F,D) 6 ε,
there exists an algorithm that runs in time poly(n) (1/ε)c′k and outputs a k′-GMM hypothesis D̂ =

∑k′
i=1 ŵiN (µ̂i, Σ̂i) with k′ 6 k such that with high probability there exists a bijection π : S→ [k′] satisfying

the following: For all i ∈ S, it holds that |wi− ŵπ(i)| 6 polyk(ε) and dTV

(
N (µi, Σi),N (µ̂π(i), Σ̂π(i))

)
6

ε1/c′′k .

Discussion. Handling Arbitrary Weights: Our algorithm succeeds without any assumptions on
the weights of the mixture components. We emphasize that this is an important feature and not a
technicality. Prior and concurrent work cannot handle the case of general weights – even for the
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case of k = 2 components! Obtaining a fully polynomial-time algorithm for the general case (i.e.,
one not incurring an exponential cost in 1/wmin) requires genuinely new algorithmic ideas and is
one of the key technical innovations of the aforementioned result.
Handling Arbitrary Covariances: Our algorithm does not require assumptions on the eigenvalues
of the component covariances, modulo basic limitations posed by numerical computation issues.
Specifically, our algorithm works even if some of the component covariances are rank-deficient
(i.e., have directions of 0 variance) with running time scaling polynomially in the bit-complexity
of the unknown component means and covariances. Such a dependence on the bit complexity of
the input parameters is unavoidable – there exist3 examples of rank-deficient covariances with
irrational entries such that the total variation distance between the corresponding Gaussian and
every Gaussian with covariance matrix of rational entries is the maximum possible value of one.

Overview. In the non-robust setting (i.e., for ε = 0), the algorithm of [MV10] solves this learning
problem. The key idea of [MV10] is to observe that if a mixture of k Gaussians has every pair of
components separated in total variation distance by at least δ, then a random univariate projection
of the mixture has a pair of components that are δ/

√
d-separated in total variation distance. Their

algorithm uses this observation to piece together estimates of the mixture when projected to several
carefully chosen directions to get an estimate of the high-dimensional mixture. Notice, however,
that such a strategy meets with instant roadblock in the presence of outliers: the fraction of outliers,
being a dimension-independent constant, completely overwhelms the total variation distance
between components in any one direction making them indistinguishable.

Our robust algorithm is based on three new ingredients:

1. a new and efficient partial clustering algorithm based on the sum-of-squares (SoS) method,

2. a novel list-decodable tensor decomposition method, and

3. a recursive spectral separation method.

We briefly describe these ideas below and how they can be interleaved to obtain our algorithm.
Efficient Partial Clustering. We call a mixture partially clusterable if it contains a pair of compo-

nents at total variation distance larger than 1−Ωk(1). Interestingly, it turns out that the clustering
algorithm of [BK20] (Theorem 2.12) can be generalized to the partial clustering setting, i.e., the
setting where we are guaranteed to have a pair of components that are well-separated (with no
guarantees on the remaining components). For a mixture with minimum mixing weight α, this
gives an algorithm with running time of d(k/α)O(k)

to partition the input sample into components so
that each piece of the partition is (effectively) a (poly(α/k) + ε)-corrupted sample from disjoint
sub-mixtures.

By applying the above partial-clustering algorithm, we can effectively assume that the input is
an ε-corrupted sample from a mixture with every pair of components at most (1−Ωk(1))-far in
total variation distance. Then, we use robust covariance estimation (see Theorem 7.1 in [BK20]) to
make the mixture approximately isotropic, i.e. the mean of the mixture is ≈ 0 and the covariance of
the mixture is ≈ I (in Frobenius norm).

3For example, for the unit vector v = (1/
√

3, 1/
√

3, 1/
√

3, 0, 0, . . . , 0), for every choice of rational covariance Σ, the
total variation distance between N (0, I − vv>) and N (0, Σ) is one.

10



After partial clustering and an approximate isotropic transformation, every pair of components
are close in TV distance. Under this condition, in order to learn the unknown mixture with error
guarantees in total variation distance, it suffices to obtain polyk(ε)-error estimates of the µi, Σi’s in
Frobenius norm. As we will see soon, this will suffice for our weaker result that has an exponential
dependence on the minimum mixing weight.

To get a fully polynomial algorithm, we delve a bit deeper: the exponential dependence on
the minimum mixing weight is incurred only when two components are spectrally separated (see
Definition 2.7, which in turn relies on the degree required for certifiable anti-concentration. Instead,
we give a new partial clustering algorithm that works in fixed polynomial time, whenever there is
a pair of Gaussian components separated either via their means or the relative Frobenius distance.
The resulting clusters might now have components that are spectrally separated, a difficulty that
we address later.

List-decodable Tensor Decomposition. Kane [Kan20] gave a polynomial-time algorithm to robustly
learn an equiweighted mixture of two Gaussians. For this special case, after isotropic transformation,
one can effectively assume that the two means are ±µ and the two covariances are I ± Σ. Kane’s
idea was to use the Hermite tensor (which can be built using the 4-th and 6-th raw moments of the
mixture). Since we must use outlier-robust estimates of these tensors, we can only obtain estimates
that are accurate up to constant error in Frobenius norm of the tensor. Kane’s key observation is
that for the special case of k = 2 components, one can build two different Hermite tensors, one of
which is rank-one with component ≈ µ (and thus one can immediately “read off” µ); the other only
has a tensor power of Σ. This second tensor is of the form T̂4 = Sym((Σ− I)⊗ (Σ− I)) + E, where
‖E‖F = Ok(

√
ε) and Sym refers to symmetrizing over all possible permutations of the “4 modes

of the tensor”. Unlike the case of the mean, one cannot simply “read-off”4 Σ from T4, but Kane
gives a simple method to accomplish this. As noted in [Kan20], it is not clear how to extend this
to non-equiweighted mixtures of k = 2 Gaussians, and going to even k = 3 components requires
substantially new ideas.

The surprising fact that we establish is that by looking at only the first four moments of our
mixture, we can learn all of the components up to low-rank error, i.e., up to errors along a bounded
number of hidden directions. Thus, the new tensor decomposition has both Frobenius norm error
and low-rank error. To see the idea, it is helpful to focus on the simpler case where all the means are
zero. In this case, the estimated 4th Hermite tensor (built from estimated raw moments of degree at
most 4 of the mixture) has the following :

T̂4 =
k

∑
i=1

wiSym((Σi − I)⊗ (Σi − I) + E) ,

where E is a 4-tensor with ‖E‖F = Ok(
√

ε).
Given the form of this tensor, it is natural to consider tensor decomposition algorithms, by

thinking of Σi − I as a d2-dimensional vector. However, we run into the issue of uniqueness of
tensor decomposition, since we are dealing with 2nd order tensors (once we view Σi − I as a
d2-dimensional vector). One might imagine computing higher-order tensors of similar forms to

4It is helpful to visualize a single entry of this tensor for, say, the case when i, j, k, ` are all distinct: T̂4(i, j, k, `) =
1
3 (Σ(i, j)Σ(k, `) + Σ(i, k)Σ(j, `) + Σ(i, `)Σ(j, k)) + error. Notice that obtaining entries of Σ from T4 is formally a task of
solving noisy quadratic equations.
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overcome the uniqueness issues, but this runs into two major complications: first, the symmetriza-
tion operation introduces spurious terms that do not have the sum of tensor-power structure
required for such an algorithm to succeed.

Second, even if one were to get hold of the tensor without the symmetrization operation,
the only applicable tensor decomposition algorithm (recall that we do not make any genericity
assumptions on the components that are typically required by tensor decomposition algorithms) is
the result of Barak, Kelner, and Steurer [BKS15]. However, the [BKS15] result, while being efficient
in its dependence on the number of components, has exponential dependence on the target error,
which is prohibitively expensive for our application.

Rather than recovering the unique decomposition of the tensor T̂4 above, we instead produce a
list of candidate decompositions. To do this, we start by applying an operation that is a common
trick in most tensor decomposition algorithms. In our context, this trick amounts to taking a
random matrix (with independent standard Gaussian entries) P and “collapsing” the last two
modes of T̂4 with P (i.e., computing Ŝ(i, j) = ∑k,` T̂4(i, j, k, `)P(k, `)) to obtain a matrix Q. In the
usual tensor decomposition procedures, we are interested in proving that one can recover all the
information about the components of the tensor from Q.

Spectral Separation of Thin Components. While the running time of our partial clustering and
tensor decomposition algorithms are now polynomial, the guarantees of the tensor decomposition
subroutine we discussed above are no longer enough to guarantee a recovery of parameters that
result in a mixture close in total variation distance. Because of the three conditions that we assumed
in the working of the tensor decomposition algorithm, we can no longer guarantee the third one
that gives a lower bound on the smallest eigenvalue of every covariance (relative to the covariance
of the mixture). In particular, we can end up in a situation where, even though we have a list of
parameters that contain Frobenius-norm-close estimates of the covariances, the estimates do not
provide a total variation distance guarantee. (Consider a “skinny” direction where the variance of
some component is very small, or even 0, forcing us to learn the parameters more precisely!)

It turns out that the above is the only way the algorithm can fail at this point — one or more
covariance matrices have a very small eigenvalue (if not, the Frobenius norm error would imply
TV-distance error). But since we have estimates of the covariances, we can find such a small
eigenvector. Now we observe that since the mixture is nearly isotropic (i.e., the overall variance
in each direction is ∼ 1), if some component has very small variance along a direction, then the
components must be separable along this direction. We show that it is possible to efficiently cluster
the mixture after projecting it to this direction, so that each cluster has strictly fewer components.
We then recursively apply the entire algorithm on the clusters obtained, which will each have
strictly fewer components.

Future Directions. A natural question arising from our work is to characterize the class of
distributions such that their mixtures can be learned, even information-theoretically.

Open Question 2.17. Are there mixtures of non-Gaussian distributions that can be learned robustly/non-
robustly and information-theoretically/efficiently? Is there a statistical-computational gap between
any of these settings?

We note that the aforementioned algorithm is not entirely captured by the sum-of-squares proof
system. This leads to the following question:
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Open Question 2.18. Can the sum-of-squares proof system efficiently learn a mixutre of k arbitrary
Gaussians?

We hope that answering some of these question, along with the techniques we have developed
can pave the way for robustly learning various popular latent variable models.

2.2 Linear Regression

Regression continues to be extensively studied under various models, including realizable regres-
sion (no noise), true linear models (independent noise), asymmetric noise, agnostic regression
and generalized linear models (see [Wei05] and references therein). In each model, a variety of
distributional assumptions are considered over the covariates and the noise. As a consequence,
there exist innumerable estimators for regression achieving various trade-offs between sample
complexity, running time and rate of convergence. The presence of adversarial outliers adds yet
another dimension to design and compare estimators.

Seminal works on robust regression focused on designing non-convex loss functions, including
M-estimators [Hub04], Theil-Sen estimators [The92, Sen68], R-estimators [Jae72], Least-Median-
Squares [Rou84] and S-estimators [RY84]. These estimators have desirable statistical properties
under disparate assumptions, yet remain computationally intractable in high dimensions. Further,
recent works show that it is information-theoretically impossible to design robust estimators for
linear regression without distributional assumptions [KKM18].

An influential recent line of work showed that when the data is drawn from the well studied
and highly general class of hypercontractive distributions (see Definition 2.8), there exist robust and
computationally efficient estimators for regression [KKM18, PSBR20, DKS19]. Several families of
natural distributions fall into this category, including Gaussians, strongly log-concave distributions
and product distributions on the hypercube. However, both estimators converge to the the true
hyperplane (in `2-norm) at a sub-optimal rate, as a function of the fraction of corrupted points.

Given the vast literature on ad-hoc and often incomparable estimators for high-dimensional
robust regression, the central question we address in this work is as follows:

Does there exist a unified approach to design robust and computationally efficient estimators
achieving optimal rates for all linear regression models under mild distributional assumptions?

We address the aforementioned question by introducing a framework to design robust esti-
mators for linear regression when the input is drawn from a hypercontractive distribution. Our
estimators converge to the true hyperplanes at the information-theoretically optimal rate (as a
function of the fraction of corrupted data) under various well-studied noise models, including inde-
pendent and agnostic noise. Further, we show that our estimators can be computed in polynomial
time using the sum-of-squares convex hierarchy.

In classical regression, we assume D is a distribution over Rd ×R and for a vector Θ ∈ Rd,
the least-squares loss is given by errD(Θ) = Ex,y∼D

[(
y− x>Θ

)2
]
. The goal is to learn Θ∗ =

arg minΘ errD(Θ). We assume sample access to D, and given n i.i.d. samples, we want to obtain a
vector Θ that approximately achieves optimal error, errD(Θ∗). In contrast to the classical setting,
we work in the strong contamination model, defined above.
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Model 2.19 (Robust Regression Model). Let D be a distribution overRd × R such that the marginal dis-
tribution overRd is centered and has covariance Σ∗ and let Θ∗ = arg minΘ Ex,y∼D

[
(y− 〈Θ, x〉)2

]
be the

optimal hyperplane for D. Let {(x∗1 , y∗1), (x∗2 , y∗2), . . . (x∗n, y∗n)} be n i.i.d. random variables drawn from D.
Given ε > 0, the robust regression modelRD(ε, Σ∗, Θ∗) outputs a set of n samples {(x1, y1), . . . (xn, yn)}
such that for at least (1− ε)n points xi = x∗i and yi = y∗i . The remaining εn points are arbitrary, and
potentially adversarial w.r.t. the input and estimator.

A natural starting point is to assume that the marginal distribution over the covariates (the
x’s above) is heavy-tailed and has bounded, finite covariance. However, we show that there is no
robust estimator in this setting, even when the linear model has no noise and the uncorrupted
points lie on a line.

Theorem 2.20 (Bounded Covariance does not suffice). For all ε > 0, there exist two distributions
D1,D2 over Rd ×R such that dTV (D1,D2) 6 ε and the marginal distribution over the covariates has
bounded covariance, denoted by I � Σ � O(1)I, yet

∥∥Σ1/2 (Θ1 −Θ2)
∥∥

2 = Ω(1), where Θ1 and Θ2 are
the optimal hyperplanes for D1 and D2.

The aforementioned result precludes any statistical estimator that converges to the true hyper-
plane as the fraction of corrupted points tends to 0. Therefore, we strengthen the distributional
assumption consider hypercontractive distributions instead.

Definition 2.21 (Certifiable Hypercontractivity). A distribution D onRd is (ck, k)-certifiably hyper-
contractive if for all r 6 k/2, there exists a degree O(k) sum-of-squares proof (defined below) of
the following inequality in the variable v

E
x∼D

[
〈x, v〉2r

]
6 E

x∼D

[
cr 〈x, v〉2

]r

such that cr 6 ck.

Remark 2.22. Hypercontractivity captures a broad class of distributions, including Gaussian distri-
butions, uniform distributions over the hypercube and sphere, affine transformations of isotropic
distributions satisfying Poincare inequalities [KSS18] and strongly log-concave distributions. Fur-
ther, hypercontractivity is preserved under natural closure properties like affine transformations,
products and weighted mixtures [KSS18].

In this work we focus on the rate of convergence of our estimators to the true hyperplane, Θ∗,
as a function of the fraction of corrupted points, denoted by ε. We measure convergence in both
parameter distance (`2-distance between the hyperplanes) and least-squares error on the true
distribution (errD).

We introduce a simple analytic condition on the relationship between the noise (marginal
distribution over y− x>Θ∗) and covariates (marginal distribution over x) that can be considered as
a proxy for independence of y− x>Θ∗ and x :

Definition 2.23 (Negatively Correlated Moments). Given a distribution D overRd ×R, such that
the marginal distribution onRd is (ck, k)-hypercontractive, the corresponding regression instance
has negatively correlated moments if for all r 6 k, and for all v,

E
x,y∼D

[
〈v, x〉r

(
y− x>Θ∗

)r]
6 O(1) E

x∼D

[
〈v, x〉r

]
E

x,y∼D

[(
y− x>Θ∗

)r]
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Informally, the negatively correlated moments condition can be viewed as a polynomial relaxation
of independence of random variables. Note, it is easy to see that when the noise is independent of
the covariates, the above definition is satisfied.

Remark 2.24. We show that when this condition is satisfied by the true distribution, D, we obtain
rates that match the information theoretically optimal rate in a true linear model, where the noise
(marginal distribution over y− x>Θ∗) is independent of the covariates (marginal distribution over
x). Further, when this condition is not satisfied, we show that there exist distributions for which
obtaining rates matching the true linear model is impossible.

When the distribution over the input is hypercontractive and has negatively correlated moments,
we obtain an estimator achieving rate proportional to ε1−1/k for parameter recovery. Further, our
estimator can be computed efficiently. Thus, our main algorithmic result is as follows:

Theorem 2.25 (Robust Regresssion with Negatively Correlated Noise). Given ε > 0, k > 4, and
n > (d log(d))O(k) samples fromRD(ε, Σ∗, Θ∗), such that D is (c, k)-certifiably hypercontractive and has
negatively correlated moments, there exists an algorithm that runs in nO(k) time and outputs an estimator Θ̃
such that with high probability,∥∥∥(Σ∗)1/2 (Θ∗ − Θ̃

)∥∥∥
2
6 O

(
ε1−1/k

) (
errD(Θ∗)1/2

)
and,

errD(Θ̃) 6
(

1 +O
(

ε2−2/k
))

errD(Θ∗)

Remark 2.26. We note that prior work does not draw a distinction between the independent
and dependent noise models. In comparison (see Table 1), Klivans, Kothari and Meka [KKM18]
obtained a sub-optimal least-squares error scales proportional to ε1−2/k. For the special case of
k = 4, Prasad et. al. [PSBR20] obtain least squares error proportional to O(εκ2(Σ)), where κ is the
condition number. In very recent independent work Zhu, Jiao and Steinhardt [ZJS20] obtained a
sub-optimal least-squares error scales proportional to ε2−4/k.

Further, we show that the rate we obtained in Theorem 2.25 is information-theoretically optimal,
even when the noise and covariates are independent:

Theorem 2.27 (Lower Bound for Independent Noise). For any ε > 0, there exist two distribu-
tions D1,D2 over R2 ×R such that the marginal distribution over R2 has covariance Σ and is (c, k)-
hypercontractive for both distributions, and yet

∥∥Σ1/2(Θ1 −Θ2)
∥∥

2 = Ω
(
ε1−1/kσ

)
, where Θ1, Θ2 are the

optimal hyperplanes for D1 and D2 respectively, σ = max(errD1(Θ1), errD2(Θ2)) and the noise is uniform
over [−σ, σ]. Further, |errD1(Θ2)− errD1(Θ1)| = Ω

(
ε2−2/kσ2).

Next, we consider the setting where the noise is allowed to arbitrary, and need not have
negatively correlated moments with the covariates. A simple modification to our algorithm and
analysis yields an efficient estimator that obtains rate proportional to ε1−2/k for parameter recovery.

Corollary 2.28 (Robust Regresssion with Dependent Noise). Given ε > 0, k > 4 and n > (d log(d))O(k)

samples from RD(ε, Σ∗, Θ∗), such that D is (c, k)-certifiably hypercontractive, there exists an algorithm
that runs in nO(k) time and outputs an estimator Θ̃ such that with probability 9/10,∥∥∥(Σ∗)1/2 (Θ∗ − Θ̃

)∥∥∥
2
6 O

(
ε1−2/k

) (
errD(Θ∗)1/2

)
,
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Estimator Independent Noise Arbitrary Noise
Prasad et. al. [PSBR20],
Diakonikolas et. al. [DKK+18]

ε κ2 (only k = 4) ε κ2 (only k = 4)

Klivans, Kothari and Meka
[KKM18]

ε1−2/k ε1−2/k

Zhu, Jiao and Steinhardt
[ZJS20]

ε2−4/k ε2−4/k

Our Work
Thm 2.25, Cor 2.28

ε2−2/k ε2−4/k

Lower Bounds
Thm 2.27, Thm 2.29

ε2−2/k ε2−4/k

Table 1: Comparison of convergence rate (for least-squares error) achieved by various compu-
tationally efficient estimators for Robust Regression, when the underlying distribution is (ck, k)-
hypercontractive.

and,
errD(Θ̃) 6

(
1 +O

(
ε2−4/k

))
errD(Θ∗).

Further, we show that the dependence on ε is again information-theoretically optimal:

Theorem 2.29 (Lower Bound for Dependent Noise). For any ε > 0, there exist two distributionsD1,D2

overR2×R such that the marginal distribution overR2 has covariance Σ and is (c, k)-hypercontractive for
both distributions, and yet

∥∥Σ1/2(Θ1 −Θ2)
∥∥

2 = Ω
(
ε1−2/kσ

)
, where Θ1, Θ2 be the optimal hyperplanes

for D1 and D2 respectively and σ = max(errD1(Θ1), errD2(Θ2)). Further, |errD1(Θ2)− errD1(Θ1)| =
Ω
(
ε2−4/kσ2).

Overview. Consider two distributions D1 and D2 over Rd × R such that the total variation
distance between D1 and D2 is ε and the marginals for both distributions over Rd are (ck, k)-
hypercontractive and have covariance Σ. Ignoring computational and sample complexity concerns,
we can obtain the optimal hyperplanes corresponding to each distribution. Note, these hyperplanes
need not be unique and are simply charecterized as minimzers of the least-squares loss : for
i ∈ {1, 2},

Θi = arg min
Θ

E
x,y∼Di

[(
y− x>Θ

)2
]

Our central contribution is to obtain an information theoretic proof that the optimal hyperplanes
are indeed close in scaled `2 norm, i.e.∥∥∥Σ1/2 (Θ1 −Θ2)

∥∥∥
2
6 O

(
ε1−1/k

)(
E

x,y∼D1

[(
y− x>Θ1

)2
]1/2

+ E
x,y∼D2

[(
y− x>Θ2

)2
]1/2

)

Further, we show that the ε1−1/k dependence can be achieved even when the noise is not completely
independent of the covariates but satisfies an analytic condition which we refer to as negatively
correlated moments (see Definition 2.23). We provide an outline of the proof as it illustrates the
techniques we introduced in this work.
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Coupling and Decoupling. We begin by considering a maximal coupling, G, between distribu-
tions D1 and D2 such that they disagree on at most an ε-measure support (ε-fraction of the points
for a discrete distribution). Let (x, y) ∼ D1 and (x′, y′) ∼ D2. Then, observe for any vector v,

〈v, Σ(Θ1 −Θ2)〉 =
〈

v, E
G

[
xx>

]
(Θ1 −Θ2)

〉
= E
G

[〈
v, x

(
x>Θ1 − y

)〉]
+ E
G

[〈
v, x

(
y− x>Θ2

)〉] (1)

While the first term in Equation (8) depends completely on D1, the second term requires using the
properties of the maximal coupling. Since 1 = 1(x,y)=(x′,y′) + 1(x,y) 6=(x′,y′), we can rewrite the second
term in Equation (8) as follows:

E
G

[〈
v, x

(
y− x>Θ2

)〉]
= E
G

[〈
v, x′

(
y′ − (x′)>Θ2

)〉
1(x,y)=(x′,y′)

]
+ E
G

[〈
v, x

(
y− x>Θ2

)〉
1(x,y) 6=(x′,y′)

] (2)

With a bit of effort, we can combine Equations (8) and (2), and upper bound them as follows:

〈v, Σ(Θ1 −Θ2)〉 6 O(1)
(

E
G

[〈
v, x

(
x>Θ1 − y

)〉]
︸ ︷︷ ︸

(i)

+E
G

[〈
v, x′

(
(x′)>Θ2 − y′

)〉]
︸ ︷︷ ︸

(ii)

+ E
G

[〈
v, x

(
y− x>Θ1

)〉
1(x,y) 6=(x′,y′)

]
+ E
G

[〈
v, x′

(
y′ − (x′)>Θ2

)〉
1(x,y) 6=(x′,y′)

] )
(3)

Observe, since we have a maximal coupling, the last two terms appearing in Equation (3) are
non-zero only on an ε-measure support. To bound them, we decouple the indicator using Hölder’s
inequality,

E
G

[〈
v, x(y− x>Θ1)

〉
1(x,y) 6=(x′,y′)

]
6 E

[
1(x,y) 6=(x′,y′)

] k−1
k

E

[
〈v, x〉k

(
y− x>Θ1

)k
] 1

k

6 ε1−1/k ·E
[
〈v, x〉k

(
y− x>Θ1

)k
] 1

k

︸ ︷︷ ︸
(iii)

(4)

where we used the maximality of the coupling G to bound E

[
1(x,y) 6=(x′,y′)

]
6 ε. The above analysis

can be repeated verbatim for the second term in (3) as well. Going forward, we focus on bounding
terms (i), (ii) and (iii).

Gradient Conditions. To bound terms (i) and (ii) in Equation (3), we crucially rely on gradient
information provided by the least-squares objective. Concretely, a key observation in our information-
theoretic proof is that the candidate hyperplanes are locally optimal: given least-squares loss, for
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i ∈ {1, 2} for all vectors v,〈
∇ E

x,y∼Di

[(
y− x>Θi

)2
]

, v

〉
= E

x,y∼Di

[〈
v, xx>Θi − xy

〉]
= 0

where Θ1 and Θ2 are the optimal hyperplanes for D1 and D2 respectively. Therefore, both (i) and
(ii) are identically 0. It remains to bound (iii).

Independence and Negatively Correlated Moments. We observe that term (iii) can be inter-
preted as the k-th order correlation between the distribution of the covariates projected along v and
the distribution of the noise in the linear model. Here, we observe that if the linear model satisfies
the negatively correlated moments condition (Definition 2.23), we can decouple the expectation and
bound each term independently:

E

[
〈v, x〉k

(
y− x>Θ1

)k
]1/k

6 E

[
〈v, x〉k

]1/k
E

[(
y− x>Θ1

)k
]1/k

(5)

Observe, when the underlying linear model has independent noise, Equation (5) follows for any
k. We thus crucially exploit the structure of the noise and require a considerably weaker notion
than independence. Further, if the negatively correlated moments property is not satisfied, we can
use Cauchy-Schwarz to decouple the expectation in Equation (5) and incur a ε1−2/k dependence.
Conceptually, we emphasize that the negatively correlated moments condition may be of independent
interest to design estimators that exploit independence in various statistics problems.

Hypercontractivity. To bound the RHS in Equation (5), we use our central distributional assump-
tion of hypercontractive k-th moments (Definition 2.8) of the covariates :

E

[
〈v, x〉k

]1/k
6
√

ck E

[
〈v, x〉2

]1/2
=
√

ck 〈v, Σv〉1/2

We can bound the noise similarly, by assuming that the noise is hypercontractive and this con-
siderably simplifies our statements. However, hypercontractivity of the noise is not a necessary
assumption and prior work indeed incurs a term proportional to the k-th moment of the noise.
Assuming boundedness of the regression vectors, Klivans, Kothari and Meka [KKM18] obtained
a uniform upper bound on k-th moment of the noise by truncating large samples. We note that
the same holds for our estimators and we refer the reader to Section 5.2.3 in their paper. Finally,
substituting v = Θ1 −Θ2 and rearranging, completes the information-theoretic proof.

We note that our approach already differs from prior work [KKM18, PSBR20, ZJS19] and to our
knowledge, we obtain the first information theoretic proof that being ε-close in TV distance implies
that the optimal hyperplanes are O

(
ε1−1/k) close in `2 distance.

Future Directions. We note that our estimators obtain the rate matching recent work for Gaus-
sians, albeit in quasi-polynomial time. In comparison, Diakonikolas, Kong and Stewart [DKS18]
obtain the same rate in polynomial time, when the noise is independent of the covariates. This
leads to the following question
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Open Question 2.30 (Sub-Gaussian Rates in Polynomial Time). Is there a polynomial time algo-
rithm that achieves O (ε · poly (log(1/ε))) rates for all sub-Gaussian distributions? Is any extra
log(1/ε) factor neccesary?

Further, the sample complexity of our estimators scales proportional to dΩ(k). Such large sample
complexity may not be neccesary.

Open Question 2.31 (Sub-Gaussian Rates in Polynomial Time). Can we achieve the optimal trade-
off between sample complexity, running time and rate for all hypercontractive distributions?

A natural generalization of our work is to consider robust algorithms for Generalized Linear
Models, which capture linear, logistic and multi-response regression. Further, such algorithms
would pave the way for robust estimators for learning Graphical Models that have received
significant attention in various machine learning and computational biology domains. Thus
far, obtaining the statistically optimal rate for learning simple Graphical Models remains open,
even with unbounded computation [LSS+]. A closely related problem is that of list-decodable
regression and subspace recovery, where an overwhelming fraction of data is corrupted (see
for example [KKK19, RY20a, RY20b][BK21]). Studying variants of regression and latent variable
models in the list-decodable setting is ripe for future work.
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3 Randomized Numerical Linear Algebra

In the second half of this thesis proposal, we study the power of randomization for several basic
tasks in numerical linear algebra, including computing a low-rank approximation and testing
PSD-ness. Traditionally, algorithms for such tasks involve computing the entire spectrum of the
matrix, and even assuming access to fast matrix multiplication, the running time is at least nω. We
study structural properties under which we can obtain algorithms that perform provably better
than performing matrix multiplication. Further, we analyze how robust these algorithms are to
perturbations of the corresponding structral properties.

3.1 Low-Rank Approximation

Low-rank approximation is one of the most common dimensionality reduction techniques, whereby
one replaces a large matrix A with a low-rank factorization U ·V ≈ A. Such a factorization provides
a compact way of storing A and allows one to multiply A quickly by a vector. It is used as an
algorithmic primitive in clustering [DFK+04, McS01], recommendation systems [DKR02], web
search [AFKM01, Kle99], and learning mixtures of distributions [AM05, KSV05], and has numerous
other applications.

A large body of recent work has looked at relative-error low-rank approximation, whereby given
an n× n matrix A, an accuracy parameter ε > 0, and a rank parameter k, one seeks to output a
rank-k matrix B for which

‖A− B‖2
F 6 (1 + ε)‖A−Ak‖2

F, (6)

where for a matrix C, ‖C‖2
F = ∑i,j C2

i,j, and Ak denotes the best rank-k approximation to A in
Frobenius norm. Ak can be computed exactly using the singular value decomposition, but takes
time O(nω), where ω is the matrix multiplication constant. We refer the reader to the survey
[Woo14] and references therein.

For worst-case matrices, it is not hard to see that any algorithm achieving (6) must spend at least
Ω(nnz(A)) time, where nnz(A) denotes the number of non-zero entries (sparsity) of A. Indeed,
without reading most of the non-zero entries of A, one could fail to read a single large entry, thus
making one’s output matrix B an arbitrarily bad approximation.

A flurry of recent work [KP16, MW17, CLW18, Tan19, RSML18, GLT18, IVWW19, SW19, GSLW19]
has looked at the possibility of achieving sublinear time algorithms (classical and quantum) for
low-rank approximation. In particular, Musco and Woodruff [MW17] consider the important case
of positive-semidefinite (PSD) matrices. PSD matrices include as special cases covariance matrices,
correlation matrices, graph Laplacians, kernel matrices and random dot product models. Further,
the special case where the input itself is low-rank (PSD Matrix Completion) has applications in quan-
tum state tomography [GLF+10]. Subsequently, Bakshi and Woodruff [BW18] considered low-rank
approximation of the closely related family of Negative-type (Euclidean Squared) distance matrices.
Negative-type metrics include as special cases `1 and `2 metrics, spherical metrics and hypermetrics,
as well as effective resistances in graphs [DL09, TD87, CRR+96, CKM+11]. Negative-type metrics
have found various applications in algorithm design and optimization [ALN08, SS11, KMP14].

Musco and Woodruff show that it is possible to output a low-rank matrix B in factored form
achieving (6) in Õ(nk/ε2.5 + nkω−1/ε2(ω−1)) time, while reading only Õ(nk/ε2.5) entries of A. They
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also showed a lower bound that any algorithm achieving (6) must read Ω(nk/ε) entries, and
closing the gap between these bounds has remained an open question. Similarly, in joint work
with David Woodruff, we exploit the structure of Negative-type metrics to reduce to the PSD
case and obtain a bi-criteria algorithm that requires Õ(nk/ε2.5) queries. The gap in the sample
complexity and the requirement of a bi-criteria guarantee remained open. We resolve these both
these questions here.

Next we consider PSD matrices that have been corrupted by a small amount of noise. A
drawback of algorithms achieving (6) is that they cannot tolerate any amount of unstructured noise.
For instance, if one slightly corrupts a few off-diagonal entries, making the input matrix A no longer
PSD, then it is impossible to detect such corruptions in sublinear time, making the relative-error
guarantee (6) information-theoretically impossible. Motivated by this, we also introduce a new
framework where an adversary corrupts the input by adding a noise matrix N to a psd matrix A.
We assume that the Frobenius norm of the corruption is bounded relative to the Frobenius norm
of A, i.e., ‖N‖2

F 6 η‖A‖2
F. We also assume the corruption is well-spread, i.e., each row of N has

`2
2-norm at most a fixed constant factor larger than `2

2-norm of the corresponding row of A.
This model captures small perturbations to PSD matrices that we may observe in real-world

datasets, as a consequence of round-off or numerical errors in tasks such as computing Laplacian
pseudoinverses, and systematic measurement errors when computing a covariance matrix. One
important application captured by our model is low-rank approximation of corrupted correlation
matrices. Finding a low-rank approximation of such matrices occurs when measured correlations are
asynchronous or incomplete, or when models are stress-tested by adjusting individual correlations.
Low-rank approximation of correlation matrices also has many applications in finance [Hig02].

Given that it is information-theoretically impossible to obtain the relative-error guarantee (6) in
the robust model, we relax our notion of approximation to the following well-studied additive-error
guarantee:

‖A− B‖2
F 6 ‖A−Ak‖2

F + (ε + η)‖A‖2
F. (7)

This additive-error guarantee was introduced by the seminal work of Frieze et. al. [FKV04], and
triggered a long line of work on low-rank approximation from a computational perspective. Frieze
et al. showed that it is possible to achieve (7) in O(nnz(A)) time. Further, given access to an oracle
for computing row norms of A, 7 is achievable in sublinear time. More recently, the same notion
of approximation was used to obtain sublinear sample complexity and running time algorithms
for distance matrices [BW18],[IVWW19], and a quantum algorithm for recommendation systems
[KP16], which was subsequently dequantized [Tan19].

This raises the question of how robust are our sublinear low-rank approximation algorithms for
structured matrices, if we relax to additive-error guarantees and allow for corruption. In particular,
can we obtain additive-error low-rank approximation algorithms for PSD matrices that achieve
sublinear time and sample complexity in the presence of noise? We characterize when such robust
algorithms are achievable in sublinear time.

Our Results. We begin with stating our results for low-rank approximation for structured matri-
ces. Our main result is an optimal algorithm for low-rank approximation of PSD matrices:
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Problem
Prior Work Our Results Query Lower

Query Run Time Query Run Time Bound

PSD LRA
O
(

nk
ε2.5

)
O
(

nkω−1

ε2ω−2 + nk
ε2.5

)
O∗
(

nk
ε

)
O†
(

nkω−1

εω−1

)
Ω
(

nk
ε

)
[MW17] Thm. 3.1 [MW17]

PSD LRA
PSD Output

O
(

nk
(

k
ε2 +

1
ε3

))
O
(

nkω−1
(

k
εω + 1

ε3ω−3

))
O∗
(

nk
ε

)
O†
(

nkω−1

εω−1

)
Ω
(

nk
ε

)
[MW17] Thm. 3.1 [MW17]

Negative-Type
LRA

O
(

nk
ε2.5

)
O
(

nkω−1

ε2ω−2 + nk
ε2.5

)
O∗
(

nk
ε

)
O†
(

nkω−1

εω−1

)
Ω
(

nk
ε

)
Bi-criteria, [BW18] No Bi-criteria, Thm. 3.4 [BW18]

Coreset Ridge
Regression

O
(

ns2
λ

ε4

)
O
(

nsω
λ

εω

)
O∗
(

nsλ
ε2

)
O†
(

nsω−1
λ

ε2ω−2

)
Ω
(

nsλ
ε2

)
[MW17] Thm. 3.6

Table 2: Comparison with prior work. The notation O∗ and O† represent existence of matching
lower bounds for query complexity and running time (assuming the fast matrix multiplication
exponent ω is 2) respectively. The notation sλ is used to denote the statistical dimension of ridge
regression. All bounds are stated ignoring polylogarithmic factors in n, k and ε.

Theorem 3.1 (Sample-Optimal PSD LRA). Given a PSD matrix A, there exists an algorithm that queries
Õ(nk/ε) entries in A and outputs a rank k matrix B such that with probability 99/100, ‖A− B‖2

F 6
(1 + ε)‖A−Ak‖2

F, and the algorithm runs in time Õ(n · (k/ε)ω−1).

Remark 3.2. Our algorithm matches the sample complexity lower bound of Musco and Woodruff,
up to logarithmic factors, which shows that any randomized algorithm that outputs a (1 + ε)-
relative-error low-rank approximation for a PSD matrix A must read Ω(nk/ε) entries. Our running
time also improves that of Musco and Woodruff and is optimal if the matrix multiplication exponent
ω is 2.

Remark 3.3. We can extend our algorithm such that the low-rank matrix B we output is also PSD
with the same query complexity and running time. In comparison, the algorithm of Musco and
Woodruff accesses Õ(nk/ε3 + nk2/ε2) entries in A and runs in time Õ(n(k/ε)ω + nkω−1/ε3(ω−1)).

At the core of our analysis is a sample optimal algorithm for Spectral Regression: minX ‖DX−
E‖2

2. We show that when D has orthonormal columns and E is arbitrary, we can sketch the
problem by sampling rows proportional to the leverage scores of D and approximately preserve the
minimum cost. This is particularly surprising since our sketch only computes sampling probabilities
by reading entries in D, while being completely agnostic to the entries in E. Here, we also prove
a spectral approximate matrix product guarantee for our one-sided leverage score sketch, which
may be of independent interest. We note that such a guarantee for leverage score sampling does
not appear in prior work, and we discuss the technical challenges we need to overcome in the
subsequent section.

The techniques we develop for PSD low-rank approximation also extend to computing a
low-rank approximation for distance matrices that arise from negative-type (Euclidean-squared)
metrics. Here, our input is a pair-wise distance matrix A corresponding to a point set P =

{x1, x2, . . . , xn} ∈ Rd such that Ai,j = ‖xi − xj‖2
2. We obtain an optimal algorithm for computing a

low-rank approximation of such matrices:
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Theorem 3.4 (Sample-Optimal LRA for Negative-Type Metrics). Given a negative-type distance matrix
A, there exists an algorithm that queries Õ(nk/ε) entries in A and outputs a rank k matrix B such that with
probability 99/100, ‖A− B‖2

F 6 (1 + ε)‖A−Ak‖2
F, and the algorithm runs in time Õ(n · (k/ε)ω−1).

Remark 3.5. In prior work with David Woodruff [BW18], we obtained a Õ(nk/ε2.5) query algorithm
that outputs a rank-(k + 4) matrix B such that ‖A− B‖2

F 6 (1 + ε)‖A−Ak‖2
F. We show that the

bi-criteria guarantee is not necessary, thereby resolving an open question in their paper.

Structured Regression. The sample-optimal algorithm for PSD Low-Rank Approximation also
leads to a faster algorithm for Ridge Regression, when the design matrix is PSD. Given a PSD
matrix A, a vector y and a regularization parameter λ, we consider the following optimization
problem: minx∈Rn ‖Ax− y‖2

2 + λ‖x‖2
2. This problem is often referred to as Ridge Regression and

has been the focus of numerous theoretical and practical works.

Theorem 3.6 (PSD Ridge Regression.). Given a PSD matrix A, a regularization parameter λ and
statistical dimension sλ = Tr(A2 + λI)−1A2, there exists an algorithm that queries Õ(nsλ/ε2) entries of
A and with probability 99/100 outputs a (1 + ε) approximate solution to the Ridge Regression objective
and runs in Õ(n(sλ/ε2)ω−1) time.

Remark 3.7. Our result improves on prior work by Musco and Woodruff [MW17], who obtain an
algorithm that queries Õ(ns2

λ/ε4) entries in A and runs in Õ(n(sλ/ε2)ω) time.

Robust Low-Rank Approximation. Next, we consider a robust form of low-rank approximation
problem, where the input is a PSD matrix corrupted by noise. In this setting, we have query access
to the corrupted matrix A + N, where A is PSD and N is such that ‖N‖2

F 6 η‖A‖2
F. Further, for

all i ∈ [n] ‖Ni,∗‖2
2 6 c‖Ai,∗‖2

2, for a fixed constant c. The diagonal of a PSD matrix carries crucial
information since the largest diagonal entry upper bounds all off-diagonal entries. Therefore, a
reasonable adversarial strategy is to corrupt the largest diagonal entries and make them close to the
small diagonal entries, which enables the resulting matrix to have large off-diagonal entries that
are hard to find. Capturing this intuition we parameterize our algorithms and lower bounds by the
largest ratio between a diagonal entry of A and A+N, denoted by φmax = maxj∈[n] Aj,j/|(A+N)j,j|.

Theorem 3.8 (Robust LRA Lower Bound). Let ε > η > 0. Given A + N such that A is PSD and N is a
corruption matrix as defined above, any randomized algorithm that with probability at least 2/3 outputs a
rank-k approximation up to additive error (ε + η)‖A‖2

F must read Ω
(
φ2

maxnk/ε
)

entries of A + N.

Remark 3.9. Any algorithm must incur additive error η‖A‖2
F, since A is not even identifiable below

additive-error η‖A‖2
F.

Remark 3.10. In our hard instance, φ2
max can be as large as εn/k, which implies a sample-complexity

lower bound of Ω(n2). While this lower bound precludes sublinear algorithms for arbitrary PSD
matrices, we observe that in many applications φmax can be significantly smaller. For instance, if A
is a correlation matrix, we know that the true diagonal entries of A + N are 1 and can ignore any
corruption on them to bound φmax by 1.

Motivated by the aforementioned observation, we introduce algorithms for robust low-rank
approximation, parameterized by the corruption on the diagonal entries. We obtain the following
theorem:
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Theorem 3.11 (Robust Low-Rank Approximation). Given A + N, which satisfies our noise model, there
exists an algorithm that queries Õ(φ2

maxnk/ε) entries in A + N and computes a rank k matrix B such that
with probability at least 99/100, ‖A− B‖2

F 6 ‖A−Ak‖2
F + (ε +

√
η)‖A‖2

F.

Remark 3.12. While the sample complexity of this algorithm matches the sample complexity in the
lower bound, it incurs additive-error

√
η‖A‖2

F as opposed to η‖A‖2
F. An interesting open question

here is whether we can achieve additive-error o(
√

η‖A‖2
F), though we note that when η2 6 ε, this

just changes the additive error guarantee of our low-rank approximation by a constant factor.

Remark 3.13. Our techniques extend to low-rank approximation of correlation matrices, and we
obtain a sample complexity of Õ(nk/ε), which is optimal. In fact, the hard instance in [MW17]
implies an Ω(nk/ε) lower bound on the sample complexity, even in the presence of no noise.
Surprisingly, corrupting a correlation matrix does not increase the sample complexity and only
incurs an additive error of

√
η‖A‖2

F.

Future Directions. A nascent area in algorithm design is developing fast algorithms for structured
linear algebra problems. This area has seen rapid progress for problems including low-rank
approximation (see above), regression and covariance estimation. Considering structured matrices
can also be an avenue for progress on major open problems like spectral low-rank approximation.
An open ended research direction is as follows:

Open Question 3.14. When does structure in the input lead to faster algorithms for fundamental
problems in numerical linear algebra? How robust are the corresponding algorithms to perturba-
tions of the structure in the input?

As mentioned above, exploiting structure of the input matrices has lead to several algorith-
mic breakthroughts: solving linear systems for Laplacian/Diagonally Dominant matrices [ST14,
KOSZ13, KMP14] and Block Henkel matrices [PV21], covariance estimation of Toeplitz matri-
ces [ELMM20], and approximation the permanent of boolean [JS89], non-negative matrices [JSV04]
and PSD [AGGS17, YP21] matrices. Obtaining provable guarantees for the aforementioned tasks,
even when the input matrix is perturbed by noise, is an intruiging research direction.

A closely related model to study algorihms for numerical linear algebra is the matrix-vector
query model. It captures a large family of iterative algorithms, such as Krylov methods, and
typically the number of matrix-vector queries are the main bottleneck in real-world problems.
Therefore, a natural question to consider is as follows:

Open Question 3.15. What is the matrix-vector product complexity of low-rank approximation for
the Frobenius norm, and more generally, for other matrix norms?

Currently, we do not know any lower bounds for the matrix-vector complexity of low-rank
approximation under any matrix norm. For Frobenius and Spectral low-rank approximation,
Musco and Musco [MM15] provide an upper bound of O

(
k log(d/ε)/

√
ε
)

matrix-vector products.
More broadly, the tools we developed in these works have been useful for a myriad of machine

learning applications, including provable guarantees for training two layer ReLU networks [BJW19],
distriuted clustering [ABB+17] , learning a latent simplex in input sparsity time [BBK+21], and
quantum-inspired algorithms for machine learning [CCH+20]. Looking forward, we hope to
understand the power and applicability of these tools to learning other latent models as well as
quantum-inspired algorithms.
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3.2 PSD Testing

Testing whether a matrix is Positive Semi-Definite often provides crucial insights into the structure
of metric spaces, arises as a separation oracles in Semi-Definite Programming (SDP), leads to faster
algorithms for solving linear systems and linear algebra problems detects existence of community
structure in random graphs, and is used to ascertain local convexity of functions. Furthermore,
testing PSDness is also useful when studying the rate of dissipation in the heat equation and the
behavior of non-oscillatory, exponentially stable modes of linear differential equations. For these
applications, in addition to testing the existence of negative eigenvalues, it is often important to
provide a certificate that the matrix is not PSD, by exhibiting a direction in which the quadratic form
is negative.

While efficient, numerically stable algorithms for computing the spectrum of a matrix have
been known since Turing [Tur48], such algorithms require reading the entire matrix and incur
a cubic running time in practice. Computing the eigenvalues of a matrix is often the bottleneck
in applications, especially when just determining the existence of negative eigenvalues suffices.
For instance, checking embeddability of a finite metric into Euclidean space, feasibility of a SDP,
convexity of a function, and if specialized solvers are applicable for linear algebraic problems, all
only require knowledge of whether a given matrix is PSD. We initiate the study of when we can
test PSD-ness without reading the entire matrix.

We approach the problem from the perspective of property testing, where the input matrix
A is promised to be either a PSD matrix, or “ε-far” from PSD under an appropriate notion of
distance (discussed below). Specifically, we work in the bounded-entry model, proposed by Balcan,
Li, Woodruff, and Zhang [BLWZ19], where the input matrix has bounded entries: ‖A‖∞ 6 1.
Boundedness is often a natural assumption in practice, and has numerous real world applications,
such as recommender systems as in the Netflix Challenge [KBV09], unweighted or bounded weight
graphs [Gol10, GGR98], correlation matrices, distance matrices with bounded radius, and others
[LWW14, KIDP16, BLWZ19]. Further, the boundedness of entries avoids degenerate instances
where an arbitrarily large entry is hidden in A, thereby drastically changing the spectrum of A,
while being impossible to test without reading the entire matrix.

Our starting point is a simple fact: a matrix A is PSD if and only if all principal5 submatrices of
A are PSD. However, a much more interesting direction is: if A is not PSD, what can be said about
the eigenvalues of the submatrices of A? Specifically, if A is far from PSD, how large of a submatrix
must one sample in order to find a negative eigenvalue? Note that given a principal submatrix
AT×T with x>AT×Tx < 0 for some x ∈ R|T|, this direction x can be used as a certificate that the
input matrix is not PSD, since y>Ay = x>AT×Tx < 0, where y is the result of padding x with 0’s.
Further, it leads us to a natural algorithm to test definiteness: sample multiple principal submatrices
and compute their eigenvalues. If any are negative, then A must not be PSD. Determining the
query complexity of this task is the principal focus of this paper. Specifically, we ask:

Can the positive semi-definiteness of a bounded matrix be tested via the semi-definiteness of a
small random submatrix?

The Testing Models. The distance from A to the PSD cone is given by minB�0 ‖A− B‖, where
‖ · ‖ is a norm, and B � 0 denotes that B is PSD. To instantiate ‖ · ‖, we consider two natural norms

5Recall that a principal submatrix AT×T for T ⊆ [n] is the restriction of A to the rows and columns indexed by T.
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over n× n matrices: the spectral norm (‖ · ‖2) and the Euclidean norm (‖ · ‖F). Perhaps surprisingly,
the distance of a symmetric matrix A to the PSD cone under these norms can be characterized in
terms of the eigenvalues of A. In particular, let λ ∈ Rn be the vector of eigenvalues of A. Then,
the spectral norm distance corresponds to the `∞ distance between λ and the positive orthant.
Similarly, the squared Frobenius distance corresponds to the `2

2 distance between λ and the positive
orthant.

Therefore, we will refer to the two resulting gap problems as the `∞-gap and the `2
2-gap,

respectively. This connection between matrix norms of A and vector norms of eigenvalues λ will
be highly useful for the analysis of random submatrices. Next, we formally define the testing
problems:

Problem 3.16 (PSD Testing with Spectral norm/`∞-gap). Given ε ∈ (0, 1] and a symmetric matrix
A ∈ Rn×n such that ‖A‖∞ 6 1, distinguish whether A satisfies:

(1) A is PSD.

(2) A is ε-far from the PSD cone in Spectral norm: minB�0 ‖A− B‖2 = maxi:λi<0 |λi(A)| > εn.

The fact that the spectral norm distance from A to the PSD cone (minB�0 ‖A−B‖2) is equivalent
to the magnitude of the smallest negative eigenvalue of A is a consequence of the variational
principle for eigenvalues. For general non-symmetric matrices A, one can replace (2) above with
the condition x>Ax < −εn for some unit vector x ∈ Rn, which is equivalent to (2) if A is symmetric
(again by the variational principle). We note that our results for the `∞-gap hold in this more general
setting.6

Next, if we instantiate ‖ · ‖ with the (squared) Euclidean norm, we obtain the `2
2 gap problem.

Problem 3.17 (PSD Testing with `2
2-gap). Given ε ∈ (0, 1] and a symmetric matrix A ∈ Rn×n such

that ‖A‖∞ 6 1, distinguish whether A satisfies:

(1) A is PSD.

(2) A is ε-far from the PSD cone in squared Euclidean norm:

min
B�0
‖A− B‖2

F = ∑
i:λi(A)<0

λ2
i (A) > εn2 (8)

We first state our result for the `∞ gap problem in its most general form, which is equivalent to
Problem 3.16 in the special case when A is symmetric.

Theorem 3.18 (`∞-gap Upper Bound). There is a non-adaptive sampling algorithm which, given A ∈
Rn×n with ‖A‖∞ 6 1 and ε ∈ (0, 1), returns PSD if x>Ax > 0 for all x ∈ Rn, and with probability 2/3
returns Not PSD if x>Ax 6 −εn for some unit vector x ∈ Rn. The algorithm make Õ(1/ε2) queries to the
entries of A, and runs in time Õ(1/εω).

We demonstrate that the algorithm of Theorem 3.18 is optimal up to log(1/ε) factors, even for
adaptive algorithms with two-sided error. Formally, we show:

6Also note that given query access to any A ∈ Rn×n, one can always run a tester on the symmetrization B =

(A + A>)/2, which satisfies x>Ax = x>Bx for all x, with at most a factor of 2 increase in query complexity.
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Theorem 3.19 (`∞-gap Lower Bound). Any adaptive or non-adaptive algorithm which solves the PSD
testing problem with ε-`∞ gap with probability at least 2/3, even with two-sided error and if A is promised
to be symmetric, must query Ω̃(1/ε2) entries of A.

Next, we present our algorithm for the `2
2-gap problem. Our algorithm crucially relies on first

running our tester for the `∞-gap problem, which allows us to demonstrate that if A is far from PSD
in `2

2 but close in `∞, then it must be far, under other notions of distance such as Schatten norms or
residual tail error, from any PSD matrix.

Theorem 3.20 (`2
2-gap Upper Bound). here is a non-adaptive sampling algorithm which, given a symmetric

matrix A ∈ Rn×n with ‖A‖∞ 6 1 and ε ∈ (0, 1), returns PSD if A is PSD, and with probability 2/3
returns Not PSD if minB�0 ‖A− B‖2

F > εn2. The algorithm make Õ(1/ε4) queries to A, and runs in time
Õ(1/ε2ω).

We complement our upper bound by a Ω̃( 1
ε2 ) lower bound for PSD-testing with ε-`2

2 gap, which
holds even for algorithms with two sided error. Our lower bound demonstrates a separation
between the complexity of PSD testing with

√
ε-`∞ gap and PSD testing with ε-`2

2-gap, showing
that the concentration of negative mass in large eigenvalues makes PSD testing a strictly easier
problem.

Theorem 3.21 (`2
2-gap Lower Bound). Any non-adaptive algorithm which solves the PSD testing problem

with ε-`2
2 gap with probability at least 2/3, even with two-sided error, must query Ω̃(1/ε2) entries of A.

Our lower bound is built on discrete hard instances which are “locally indistinguishable”, in
the sense that the distribution of any small set of samples is completely identical between the PSD
and ε-far cases. At the heart of the lower bound is a key combinatorial Lemma about arrangements
of paths on cycle graphs. Our construction is highly general, and we believe will likely be useful
for proving other lower bounds for matrix and graph property testing problems.
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A The Sum-of-Squares Proof System

In this section, we provide the necessary background for the sum-of-squares proof system. We
follow the exposition as it appears in lecture notes by Barak [Bar], the Appendix of Ma, Shi and
Steurer [MSS16], and the preliminary sections of several recent works [KSS18, KKK19, KKM18].

Pseudo-Distributions. We can represent a discrete probability distribution overRn by its prob-
ability mass function D : Rn → R such that D > 0 and ∑x∈supp(D) D(x) = 1. Similarly, we can
describe a pseudo-distribution by its mass function by relaxing the non-negativity constraint, while
still passing certain low-degree non-negativity tests.

Definition A.1 (Pseudo-distribution). A level-` pseudo-distribution is a finitely-supported function
D : Rn → R such that ∑x D(x) = 1 and ∑x D(x) f (x)2 > 0 for every polynomial f of degree at
most `/2, where the summation is over all x in the support of D.

Next, we define the notion of pseudo-expectation.

Definition A.2 (Pseudo-expectation). The pseudo-expectation of a function f onRd with respect
to a pseudo-distribution D, denoted by ẼD(x)[ f (x)], is defined as

ẼD(x)[ f (x)] = ∑
x

D(x) f (x) (9)

We use the notation ẼD(x)[(1, x1, x2, . . . , xn)⊗`] to denote the degree-` moment tensor of the
pseudo-distribution D. In particular, each entry in the moment tensor corresponds to the pseudo-
expectation of a monomial of degree at most ` in x. Crucially, there’s an efficient separation oracle
for moment tensors of pseudo-distributions.

Fact A.3 ([Sho87, Par00, Nes00, Las01]). For any n, ` ∈ N, the following set has a nO(`)-time weak
separation oracle (in the sense of [GLS81]):{

ẼD(x)(1, x1, x2, . . . , xn)
⊗` | degree-` pseudo-distribution D overRn

}
(10)

This fact, together with the equivalence of weak separation and optimization [GLS81] forms the
basis of the sum-of-squares algorithm, as it allows us to efficiently approximately optimize over
pseudo-distributions.

Given a system of polynomial constraints, denoted by A, we say that it is explicitly bounded if it
contains a constraint of the form {‖x‖2 6 M}. Then, the following fact follows from Fact A.3 and
[GLS81]:
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Fact A.4 (Efficient Optimization over Pseudo-distributions). There exists an (n + m)O(`)-time algo-
rithm that, given any explicitly bounded and satisfiable system7 A of m polynomial constraints in n variables,
outputs a level-` pseudo-distribution that satisfies A approximately.

7Here, we assume that the bit complexity of the constraints in A is (n + m)O(1).
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